Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

2025年の予測
今回の Security Visionaries では、Wondros の社長であり、Cybersecurity and Infrastructure Security Agency (CISA) の元首席補佐官である Kiersten Todt 氏が、2025 年以降の予測について語ります。

ポッドキャストを再生する Browse all podcasts
2025年の予測
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

Ousaban: LATAM Banking Malware Abusing Cloud Services

Aug 04 2022

Summary

Ousaban (a.k.a. Javali) is a banking malware that emerged between 2017 and 2018, with the primary goal of stealing sensitive data from financial institutions in Brazil. This malware is developed in Delphi and it comes from a stream of LATAM banking trojans sourced from Brazil, sharing similarities with other families like Guildma, Casbaneiro, and Grandoreiro. Furthermore, the threat often abuses cloud services, such as Amazon S3 to download second stage payloads, and Google Docs to retrieve the C2 configuration.

Netskope Threat Labs came across recent Ousaban samples that are abusing multiple cloud services throughout the attack flow, such as Amazon or Azure to download its payloads and log the victim’s IP, and Pastebin to retrieve the C2 configuration. The malware is downloaded through MSI files either by a JavaScript or a Delphi DLL, and is targeting more than 50 financial institutions in Brazil. Furthermore, we also found Telegram abuse in the malware code, likely used for C2 communication via Webhooks.

Diagram of Ousaban attack flow

In this blog post, we will analyze Ousaban, showing its delivery methods, obfuscation techniques, and C2 communication.

Delivery methods

Ousaban is delivered through malicious MSI files spread in phishing emails. In this campaign, we found that the MSI file downloads and executes the second stage either through JavaScript or a PE file.

Delivery by JavaScript
In the first scenario, the JavaScript is executed via CustomAction.

Example of MSI file executing JavaScript.
MSI file executing JavaScript.

The JavaScript code is obfuscated, likely in an attempt to slow down analysis.

Example of JavaScript code extracted from the MSI file
JavaScript code extracted from the MSI file

Looking at the deobfuscated code, these are the steps executed by the malware:

  1. Creates an empty file to be used as a flag in case the MSI is executed twice (similar concept as Mutex usage);
  2. Downloads the second stage from the cloud, either from Amazon or Azure;
  3. Decompress the ZIP file downloaded from the cloud and renames the main executable;
  4. Sends a simple GET request to another URL (Azure or another attacker-controlled server), alerting the attacker and logging the victim’s IP;
  5. Executes the main file via WMIC.
Screenshot of deobfuscated JavaScript extracted from the MSI file.
Deobfuscated JavaScript extracted from the MSI file.

Delivery by File

We also found Ousaban being delivered without JavaScript. In this case, we can see a file named “avisoProtesto.exe” being executed via MSI CustomAction.

Example of MSI executing a PE file.
MSI executing a PE file.

“avisoProtesto.exe” is a signed and non-malicious binary exploited to execute the malicious DLL via DLL search order hijacking.

Example of non-malicious binary used to load the malicious DLL.
Non-malicious binary used to load the malicious DLL.

This is possible because the non-malicious binary loads a DLL named “crashreport.dll” without specifying the real path of the library. Therefore, the attacker places a DLL with the same name in the same folder of the executable, making it load the malicious DLL instead.

Example of Binary vulnerable to DLL hijacking.
Binary vulnerable to DLL hijacking.

In this case, both next-stage and tracker URL are loaded from a text file, named “FileLinks”.

Screenshot of malicious URLs loaded by the malware.
Malicious URLs loaded by the malware.

All the files we analyzed were downloading the next stage from the cloud, either Amazon or Azure. In some cases, the URL used to log the victim’s IP address was also from Azure. All the URLs can be found in our GitHub repository.

Loading the second stage

The binary downloaded from the cloud is a ZIP file containing the next stage payload, which is a Delphi DLL executed by a non-malicious binary.

Example of Files downloaded from the cloud.
Files downloaded from the cloud.

The file executed by the malware is a non-malicious executable with a valid signature (“Securityo6Z3.exe”).

Screenshot of certificate found in the file executed by the malware.
Certificate found in the file executed by the malware.

The malicious DLL is then loaded by the non-malicious binary through a DLL search order hijacking vulnerability, the same technique that is used by some of the downloaders.

Example of non-malicious binary loading the next stage DLL.
Non-malicious binary loading the next stage DLL.

Second stage

The second stage is a Delphi malware responsible for decrypting and loading Ousaban’s payload in the following flow:

  1. Loads the encrypted bytes of Ousaban from disk;
  2. Decrypts Ousaban payload using a key stored in the “.data” section;
  3. Decrypts the code that runs Ousaban using the same key, stored in the “.data” section.
Example of decryption key and encrypted code stored in the “.data” section of the second stage
Decryption key and encrypted code stored in the “.data” section of the second stage.

The encrypted payload of Ousaban is located among the files downloaded from the cloud, named “ZapfDingbats.pdf”.

Example of third stage encrypted among files downloaded from the cloud.
Third stage encrypted among files downloaded from the cloud.

Once running, the second stage loads Ousaban’s encrypted bytes, which will be decrypted using the key stored in the PE “.data” section.

Screenshot of encrypted Ousaban payload being loaded.
Encrypted Ousaban payload being loaded.

Aside from decrypting the payload, the second stage also decrypts the code that will execute Ousaban in runtime, probably to slow down reverse engineering.

Screenshot of second stage decrypting and loading Ousaban payload.
Second stage decrypting and loading Ousaban payload.

We created a Python script that can be used to statically decrypt Ousaban payloads, using the same algorithm found in the malware. The code can be found in our GitHub repository.

Important API calls used by this stage are also dynamically resolved, another common technique to slow down reverse engineering.

Screenshot of APIs dynamically loaded by the malware.
APIs dynamically loaded by the malware.

Ousaban payload

Ousaban is a Delphi banking trojan, mainly focused on stealing sensitive data from financial institutions in Brazil. As previously mentioned, Ousaban shares many similarities with other Brazilian banking malware, such as the algorithm to decrypt the strings and overlay capabilities.

Ousaban commonly packs/protects its payloads with UPX or Enigma.

Example of Ousaban payload packed with UPX.
Ousaban payload packed with UPX.

One of the most characteristic aspects of Brazilian-sourced banking malware is the algorithm used to encrypt/decrypt important strings.

Screenshot of Ousaban encrypted strings.
Ousaban encrypted strings.

The algorithm used as a base by these trojans was originally demonstrated in a Brazilian magazine called “Mestres Da Espionagem Digital” in 2008. Simply put, it parses the hexadecimal string and uses a chained XOR operation with the key and the previous byte of the string.

Screenshot of part of the algorithm to decrypt the strings, commonly found in Brazilian banking malware.
Part of the algorithm to decrypt the strings, commonly found in Brazilian banking malware.

We created a Python script that can be used to decrypt strings from malware that uses this algorithm, such as Ousaban, Guildma, Grandoreiro, and others. The code can be used to decrypt a single string:

Screenshot of decrypting a single string from the malware.
Decrypting a single string from the malware.

Or to decrypt multiple strings at once, saving the result in a JSON file and also providing the option to show in the console.

Screenshot of decrypting multiple strings from the malware.
Decrypting multiple strings from the malware.

Like other Brazilian-sourced malware, Ousaban monitors the title text from the active window and compares it with a list of strings, to verify if the victim is accessing the website or an application of one of its targets.

Exammple of malware monitoring windows titles.
Malware monitoring windows titles.

In the files we analyzed, we found Ousaban targeting over 50 different financial institutions. If the window title matches one of the targets, Ousaban starts the communication with the C2 address, providing the option to the attacker to access the machine remotely.

C2 communication

Ousaban stores the C2 address remotely. In this case, the malware is using Pastebin to fetch the data. In 2021, this malware was also spotted using Google Docs to fetch this information.

Within the files downloaded from the cloud by the first stage, there’s a file named “Host”, which stores the external location of the C2 configuration. The information is encrypted with the same algorithm used in the strings.

Example of C2 configuration stored on Pastebin.
C2 configuration stored on Pastebin.

The data is stored in a dictionary, where the C2 host is also encrypted with the same algorithm used in the strings.

""
Retrieving and decrypting the C2 server address.

Ousaban only starts the communication once a targeted company is identified.

Screenshot of Ousaban C2 communication.
Ousaban C2 communication.

Lastly, the Ousaban samples we analyzed contain a routine to communicate via Telegram using Webhooks, likely to be used as a secondary channel.

Screenshot of part of Ousaban code to communicate via Telegram.
Part of Ousaban code to communicate via Telegram.

Conclusion

Ousaban is a malware designed to steal sensitive information from several financial institutions, mainly based in Brazil. Ousaban shares many similarities with other Brazilian-based banking trojans, such as Guildma and Grandoreiro. Also, as we demonstrated in this analysis, the attackers behind this threat are abusing multiple cloud services throughout the attack chain. We believe that the use of the cloud will continue to grow among attackers especially due to cost and ease.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Win32.Malware.Heuristic
    • Win32.Infostealer.Heuristic
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

All the IOCs related to this campaign and scripts can be found in our GitHub repository.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Stay informed!

Subscribe for the latest from the Netskope Blog