Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

閉める
閉める
  • Netskopeが選ばれる理由 シェブロン

    ネットワークとセキュリティの連携方法を変える。

  • 導入企業 シェブロン

    Netskopeは、フォーチュン100社の30社以上を含む、世界中で3,400社以上の顧客にサービスを提供しています。

  • パートナー シェブロン

    私たちはセキュリティリーダーと提携して、クラウドへの旅を保護します。

SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。

ネットスコープが2024年Gartner®社のシングルベンダーSASEのマジック・クアドラントでリーダーの1社の位置付けと評価された理由をご覧ください。

レポートを読む
顧客ビジョナリースポットライト

革新的な顧客が Netskope One プラットフォームを通じて、今日の変化するネットワークとセキュリティの状況をどのようにうまく乗り越えているかをご覧ください。

電子書籍を入手する
顧客ビジョナリースポットライト
Netskopeのパートナー中心の市場開拓戦略により、パートナーは企業のセキュリティを変革しながら、成長と収益性を最大化できます。

Netskope パートナーについて学ぶ
色々な若い専門家が集う笑顔のグループ
明日に向けたネットワーク

サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。

ホワイトペーパーはこちら
明日に向けたネットワーク
Netskope Cloud Exchange

Netskope Cloud Exchange (CE) は、セキュリティポスチャに対する投資を活用するための強力な統合ツールを提供します。

Cloud Exchangeについて学ぶ
Aerial view of a city
  • Security Service Edge(SSE) シェブロン

    高度なクラウド対応の脅威から保護し、あらゆるベクトルにわたってデータを保護

  • SD-WAN シェブロン

    すべてのリモートユーザー、デバイス、サイト、クラウドへ安全で高性能なアクセスを提供

  • Secure Access Service Edge シェブロン

    Netskope One SASE は、クラウドネイティブで完全に統合された単一ベンダーの SASE ソリューションを提供します。

未来のプラットフォームはNetskopeです

Security Service Edge (SSE)、 Cloud Access Security ブローカ (CASB)、 Cloud Firewall、 Next Generation Secure Web Gateway (SWG)、および Private Access for ZTNA a 13 にネイティブに組み込まれており、 Secure Access Service Edge (SASE) アーキテクチャへの旅ですべてのビジネスを支援します。

製品概要はこちら
Netskopeの動画
Next Gen SASE Branch はハイブリッドである:接続、保護、自動化

Netskope Next Gen SASE Branchは、コンテキストアウェアSASEファブリック、ゼロトラストハイブリッドセキュリティ、 SkopeAI-Powered Cloud Orchestrator を統合クラウド製品に統合し、ボーダレスエンタープライズ向けに完全に最新化されたブランチエクスペリエンスを実現します。

Next Gen SASE Branchの詳細はこちら
オープンスペースオフィスの様子
ダミーのためのSASEアーキテクチャ

SASE設計について網羅した電子書籍を無償でダウンロード

電子書籍を入手する
ダミーのためのSASEアーキテクチャ eBook
最小の遅延と高い信頼性を備えた、市場をリードするクラウドセキュリティサービスに移行します。

NewEdgeの詳細
山腹のスイッチバックを通るライトアップされた高速道路
アプリケーションのアクセス制御、リアルタイムのユーザーコーチング、クラス最高のデータ保護により、生成型AIアプリケーションを安全に使用できるようにします。

生成AIの使用を保護する方法を学ぶ
ChatGPTと生成AIを安全に有効にする
SSEおよびSASE展開のためのゼロトラストソリューション

ゼロトラストについて学ぶ
大海原を走るボート
NetskopeがFedRAMPの高認証を達成

政府機関の変革を加速するには、Netskope GovCloud を選択してください。

Netskope GovCloud について学ぶ
Netskope GovCloud
  • リソース シェブロン

    クラウドへ安全に移行する上でNetskopeがどのように役立つかについての詳細は、以下をご覧ください。

  • ブログ シェブロン

    Netskopeがセキュアアクセスサービスエッジ(SASE)を通じてセキュリティとネットワーキングの変革を実現する方法をご覧ください

  • イベント&ワークショップ シェブロン

    最新のセキュリティトレンドを先取りし、仲間とつながりましょう。

  • 定義されたセキュリティ シェブロン

    サイバーセキュリティ百科事典、知っておくべきすべてのこと

「セキュリティビジョナリー」ポッドキャスト

2025年の予測
今回の Security Visionaries では、Wondros の社長であり、Cybersecurity and Infrastructure Security Agency (CISA) の元首席補佐官である Kiersten Todt 氏が、2025 年以降の予測について語ります。

ポッドキャストを再生する Browse all podcasts
2025年の予測
最新のブログ

Netskopeがセキュアアクセスサービスエッジ(SASE)機能を通じてゼロトラストとSASEの旅をどのように実現できるかをお読みください。

ブログを読む
日の出と曇り空
SASE Week 2024 オンデマンド

SASEとゼロトラストの最新の進歩をナビゲートする方法を学び、これらのフレームワークがサイバーセキュリティとインフラストラクチャの課題に対処するためにどのように適応しているかを探ります

セッションの詳細
SASE Week 2024
SASEとは

クラウド優位の今日のビジネスモデルにおいて、ネットワークとセキュリティツールの今後の融合について学びます。

SASEについて学ぶ
  • 会社概要 シェブロン

    クラウド、データ、ネットワークセキュリティの課題に対して一歩先を行くサポートを提供

  • 採用情報 シェブロン

    Netskopeの3,000 +素晴らしいチームメンバーに参加して、業界をリードするクラウドネイティブセキュリティプラットフォームを構築してください。

  • カスタマーソリューション シェブロン

    お客様の成功のために、Netskopeはあらゆるステップを支援いたします。

  • トレーニングと認定 シェブロン

    Netskopeのトレーニングで、クラウドセキュリティのスキルを学ぶ

データセキュリティによる持続可能性のサポート

Netskope は、持続可能性における民間企業の役割についての認識を高めることを目的としたイニシアチブである「ビジョン2045」に参加できることを誇りに思っています。

詳しくはこちら
データセキュリティによる持続可能性のサポート
クラウドセキュリティの未来を形作る

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

チームに参加する
Netskopeで働く
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

カスタマーソリューションに移動
Netskopeプロフェッショナルサービス
Netskopeトレーニングで、デジタルトランスフォーメーションの旅を保護し、クラウド、ウェブ、プライベートアプリケーションを最大限に活用してください。

トレーニングと認定資格について学ぶ
働く若い専門家のグループ

Latrodectus Rapid Evolution Continues With Latest New Payload Features

Aug 29 2024

概要

Latrodectus is a downloader first discovered by Walmart back in October of 2023. The malware became very famous due to its similarities with the famous IcedID malware, not only in the code itself but also the infrastructure, as previously reported by Proofpoint and Team Cymru S2. 

The malware is usually delivered via email spam campaigns conducted by two specific threat actors: TA577 and TA578. Among the several features it contains is the ability to download and execute additional payloads, collect and send system information to the C2, terminate processes, and more. In July of 2024 Latrodectus was also observed being delivered by a BRC4 badger.

During the Threat Labs hunting activities we discovered a new version of the Latrodectus payload, version 1.4. The malware updates include a different string deobfuscation approach, a new C2 endpoint, two new backdoor commands, and more.

In this blog, we will focus on the features added/updated in this new version.

JavaScript file analysis

The first payload of the infection chain is a JavaScript file obfuscated using a similar approach used by other Latrodectus campaigns. The obfuscation technique is employed by adding several comments into the file, making it more difficult to be analyzed as well as increasing the file size considerably.

The relevant code is present in between the junk comments and once removed from the file we can see the code that would be executed.

The malware searches for lines starting with the “/////” string, puts them into a buffer and executes them as a JS function. The executed function then downloads an MSI file from a remote server and executes/installs it.

MSI file analysis

Once executed/installed, the MSI file uses the rundll32.exe Windows tool to load a DLL named “nvidia.dll” and calls a function named “AnselEnableCheck” exported by this DLL. The malicious DLL is stored inside a CAB file named “disk1”, present in the MSI file itself:

Crypter analysis

As an attempt to obfuscate the main payload, the “nvidia.dll” file uses a crypter named Dave. This crypter has been around for a long time and was used in the past by other malware such as Emotet, BlackBasta, and previous versions of Latrodectus.

The crypter stores the payload to be executed either in a resource or in a section. In the analyzed sample, the payload is stored in a section named “V+N”.

The steps used to deobfuscate, load, and execute the final payload are rather simple. The malware moves a key into the stack and resolves the Windows API functions VirtualAlloc, LoadLibrary, and GetProcAddress.

It then allocates memory using the VirtualAlloc function and performs a multi-byte XOR operation against the data in the mentioned section using the previously set key and the result of the operation is the final payload. The next steps involve aligning the payload in memory and calling its main function.

Since the crypter first copies the original payload to the allocated memory before the other steps are performed, one could simply dump the content of the first allocated memory and obtain the final payload. A script to statically unpack/deobfuscate Latrodectus payloads using Dave crypter can be found here.

The final payload is a DLL and its DllMain function is called by the crypter code. The next step is the execution of the “AnselEnableCheck” exported function, which is responsible for the execution of the final payload. 

When looking at the final payload we notice it has multiple exported functions, though since all of them have the same RVA it doesn’t matter which one is called.

Latrodectus DLL analysis

Since the general features of the main payload were already described in the past by other researchers, the following sections will focus on the updates employed by the new Latrodectus version.

String obfuscation

Unlike the previous versions that used an XOR operation to deobfuscate its strings, the updated version uses AES256 in CTR mode. The AES key is hardcoded in the deobfuscation function itself and the IV changes for each string to be decrypted. The key used in the analyzed samples is “d623b8ef6226cec3e24c55127de873e7839c776bb1a93b57b25fdbea0db68ea2”.

The deobfuscation function receives two parameters. The first one is a chunk of data and the second an output buffer. The chunk of data is used to store information used to decrypt the string and follows the format below:

  • String length: 2 bytes
  • IV: 16 bytes
  • Encrypted string: Size specified in the first field

One thing to notice is that sometimes there will be extra bytes after the encrypted string content. The following image is an example of this data chunk:

Campaign ID

In the current malware version, the campaign ID generation function continues to use the same approach where an input string is hashed using the FNV algorithm. However, a new input string “Wiski” was used, resulting in the hash 0x24e7ce9e as the campaign ID.

C2 communication

For its initial communication with the C2 server, Latrodectus collects a lot of information from the infected system such as the username, OS version and the MAC address. The information is formatted using a specific pattern, encrypted using the RC4 algorithm, encoded using base64 and sent to the C2.

The RC4 keys found in the analyzed samples were “2sDbsEUXvhgLOO4Irt8AF6el3jJ0M1MowXyao00Nn6ZUjtjXwb” and “kcyBA7IbADOhw5ztcv09vmF8GYmR38eu7OGdfD7pyRelTPKH1G”. 

During the data formatting we are able to flag the version number 1.4 being set.

The information is sent in the HTTP body via an HTTP POST request. The endpoint used in the new variants is “/test” instead of “/live” as observed in previous versions. Although a very weak indicator the usage of this specific endpoint might indicate that this is a test version of the malware.

Commands

In version 1.4 Latrodectus has introduced two new commands to its payload: command ID 22 and 25.

Command 0x16

In this command the malware downloads a shellcode from the specified server and executes it via a new thread.

The difference between this command and command 14 is that a function that performs base64 encoding is passed as a parameter to the shellcode itself. The address of the base64 function is stored in a mapped file view named “12345”.

Command 0x19

In this command, the malware receives a file name and a remote location to download the file from. The file name is then appended to %AppData%, the file is downloaded and its content written to the mentioned path.

Considering these additions, below is a table of the updated commands supported by the malware:

Command IDDescription
2Collect a list of desktop file names
3Collect info about the running processes
4Collect system information
12Download and execute a regular executable
13Download and execute a DLL via rundll32
14Download and execute a shellcode
15Self update
17Terminate itself
18Download and execute the IcedID payload
19Increase sleep timeout
20Reset request counter
21Download and execute the stealer module
22Download and execute a shellcode passing the base64 encoding function as a parameter
25Download a file to %AppData% directory

Netskope Detection

  • Netskopeの脅威対策
    • Gen:Variant.Ulise.493872
    • Trojan.Generic.36724146
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Win64.Trojan.ShellCoExec

結論

Latrodectus has been evolving pretty fast, adding new features to its payload. The understanding of the updates applied to its payload allow defenders to keep automated pipelines properly set as well as use the information for further hunting for new variants. Netskope Threat Labs will continue to track how the Latrodectus evolves and its TTP.

IOCs

All the IOCs and scripts related to this malware can be found in our GitHub repository.

author image
Leandro Fróes
Leandro Fróes is a Senior Threat Research Engineer at Netskope, where he focuses on malware research, reverse engineering, automation and product improvement.
Leandro Fróes is a Senior Threat Research Engineer at Netskope, where he focuses on malware research, reverse engineering, automation and product improvement.

Stay informed!

Subscribe for the latest from the Netskope Blog