Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

cerrar
cerrar
  • Por qué Netskope chevron

    Cambiar la forma en que las redes y la seguridad trabajan juntas.

  • Nuestros clientes chevron

    Netskope atiende a más de 3.400 clientes en todo el mundo, incluidos más de 30 de las 100 empresas más importantes de Fortune

  • Nuestros Partners chevron

    Nos asociamos con líderes en seguridad para ayudarlo a asegurar su viaje a la nube.

Líder en SSE. Ahora es líder en SASE de un solo proveedor.

Descubre por qué Netskope debutó como Líder en el Cuadrante Mágico de Gartner® 2024 para Secure Access Service Edge (SASE) de Proveedor Único.

Obtenga el informe
Visionarios del cliente en primer plano

Lea cómo los clientes innovadores navegan con éxito por el cambiante panorama actual de las redes y la seguridad a través de la Plataforma Netskope One.

Obtenga el eBook
Visionarios del cliente en primer plano
La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.

Más información sobre los socios de Netskope
Grupo de jóvenes profesionales diversos sonriendo
Tu red del mañana

Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.

Obtenga el whitepaper
Tu red del mañana
Netskope Cloud Exchange

Cloud Exchange (CE) de Netskope ofrece a sus clientes herramientas de integración eficaces para que saquen partido a su inversión en estrategias de seguridad.

Más información sobre Cloud Exchange
Vista aérea de una ciudad
  • Security Service Edge chevron

    Protéjase contra las amenazas avanzadas y en la nube y salvaguarde los datos en todos los vectores.

  • SD-WAN chevron

    Proporcione con confianza un acceso seguro y de alto rendimiento a cada usuario remoto, dispositivo, sitio y nube.

  • Secure Access Service Edge chevron

    Netskope One SASE proporciona una solución SASE nativa en la nube, totalmente convergente y de un único proveedor.

La plataforma del futuro es Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Todos los productos
Vídeo de Netskope
Next Gen SASE Branch es híbrida: conectada, segura y automatizada

Netskope Next Gen SASE Branch converge Context-Aware SASE Fabric, Zero-Trust Hybrid Security y SkopeAI-Powered Cloud Orchestrator en una oferta de nube unificada, marcando el comienzo de una experiencia de sucursal completamente modernizada para la empresa sin fronteras.

Obtenga más información sobre Next Gen SASE Branch
Personas en la oficina de espacios abiertos.
Arquitectura SASE para principiantes

Obtenga un ejemplar gratuito del único manual que necesitará sobre diseño de una arquitectura SASE.

Obtenga el eBook
Libro electrónico de arquitectura SASE para principiantes
Cambie a los servicios de seguridad en la nube líderes del mercado con una latencia mínima y una alta fiabilidad.

Más información sobre NewEdge
Autopista iluminada a través de las curvas de la ladera de la montaña
Habilite de forma segura el uso de aplicaciones de IA generativa con control de acceso a aplicaciones, capacitación de usuarios en tiempo real y la mejor protección de datos de su clase.

Descubra cómo aseguramos el uso generativo de IA
Habilite de forma segura ChatGPT y IA generativa
Soluciones de confianza cero para implementaciones de SSE y SASE

Más información sobre Confianza Cero
Conducción en barco en mar abierto
Netskope logra la alta autorización FedRAMP

Elija Netskope GovCloud para acelerar la transformación de su agencia.

Más información sobre Netskope GovCloud
Netskope GovCloud
  • Recursos chevron

    Obtenga más información sobre cómo Netskope puede ayudarle a proteger su viaje hacia la nube.

  • Blog chevron

    Descubra cómo Netskope permite la transformación de la seguridad y las redes a través del perímetro de servicio de acceso seguro (SASE)

  • Eventos y Talleres chevron

    Manténgase a la vanguardia de las últimas tendencias de seguridad y conéctese con sus pares.

  • Seguridad definida chevron

    Todo lo que necesitas saber en nuestra enciclopedia de ciberseguridad.

Podcast Security Visionaries

Predicciones para 2025
En este episodio de Security Visionaries, nos acompaña Kiersten Todt, presidenta de Wondros y ex jefa de personal de la Agencia de Seguridad de Infraestructura y Ciberseguridad (CISA), para analizar las predicciones para 2025 y más allá.

Reproducir el pódcast Ver todos los podcasts
Predicciones para 2025
Últimos blogs

Lea cómo Netskope puede habilitar el viaje hacia Zero Trust y SASE a través de las capacidades de perímetro de servicio de acceso seguro (SASE).

Lea el blog
Amanecer y cielo nublado
SASE Week 2024 bajo demanda

Aprenda a navegar por los últimos avances en SASE y Zero Trust y explore cómo estos marcos se están adaptando para abordar los desafíos de ciberseguridad e infraestructura

Explorar sesiones
SASE Week 2024
¿Qué es SASE?

Infórmese sobre la futura convergencia de las herramientas de red y seguridad en el modelo de negocio actual de la nube.

Conozca el SASE
  • Empresa chevron

    Le ayudamos a mantenerse a la vanguardia de los desafíos de seguridad de la nube, los datos y la red.

  • Ofertas de Trabajo chevron

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Soluciones para clientes chevron

    Le apoyamos en cada paso del camino, garantizando su éxito con Netskope.

  • Formación y Acreditaciones chevron

    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube.

Apoyar la sostenibilidad a través de la seguridad de los datos

Netskope se enorgullece de participar en Vision 2045: una iniciativa destinada a crear conciencia sobre el papel de la industria privada en la sostenibilidad.

Descubra más
Apoyando la sustentabilidad a través de la seguridad de los datos
Ayude a dar forma al futuro de la seguridad en la nube

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Únete al equipo
Empleo en Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Ir a Soluciones para clientes
Servicios profesionales de Netskope
Asegure su viaje de transformación digital y aproveche al máximo sus aplicaciones en la nube, web y privadas con la capacitación de Netskope.

Infórmese sobre Capacitaciones y Certificaciones
Grupo de jóvenes profesionales que trabajan

Securing AWS Temporary Tokens

Aug 10 2019

In this blog, we are going to discuss an attack vector that utilizes the STS AssumeRole and GetSessionToken API calls, and focus on what you have to do differently to detect, mitigate, and prevent abuse vs handling permanent access keys.

Imagine This

An attacker has just compromised one of your AWS credentials and gained access to your production AWS account. What do you do next? Revoke the credentials, of course. But just revoking the compromised credentials is not enough to keep the attacker out of your environment. In this blog post, we’ll explore temporary tokens and how they can provide an attacker continued access to your AWS environments, even after you have revoked compromised credentials.

Temporary tokens are provided by AWS Secure Token Service (STS) and are similar to permanent access keys in functionality and have been used to implement several common AWS features such as:

  • Assuming roles, including the passing of roles to services
  • Federated identities (e.g., single sign-on and cross-account access) 
  • Authentication of IoT devices

As with all security design, there are tradeoffs and security concerns from the use of temporary tokens:

  • Temporary tokens  can cause confusion during incident handling/response versus permanent access keys because their creation and use is logged in CloudTrail using different, somewhat confusing fields and values. As an example, there is no explicit json attribute that distinguishes a temporary token from a permanent API access key–you must infer from the access key id naming convention or other fields.
  • The remediation options for Temporary Tokens can have with high impact; e.g., deletion of users
  • Temporary tokens are harder to lock down since the creation of some types of temporary tokens cannot be restricted by policy.
  • There is no tracking of which tokens have already been created, so auditing temporary token usage and identifying temporary tokens is difficult, as they must be derived from parsing CloudTrail logs. Further, there are no direct management functions (such as deletion) for temporary tokens. We’ll discuss in detail what mitigation steps apply later in the blog. This also makes it more difficult to assess exposure from credential risk because there is no easy way to list all temporary credentials that have been issued or are active/outstanding.

Temporary Tokens

Temporary tokens are implicitly created by AWS in the case of IoT device authentication or from assuming of roles by services. Temporary tokens can also be explicitly created by authenticated users calling STS AssumeRole or GetSessionToken, e.g.,

Temporary Token Created By GetSessionToken
Figure 1: Temporary Token Created By GetSessionToken

In addition to the access key id and secret, a temporary credential includes an expiration date and a session token, which must be included in any API calls (along with the access key and secret). 

Temporary tokens essentially have the same functionality and similar security exposure as permanent access keys, but with a few differences:

  • Expiration: Temporary tokens have an expiration, ranging from 15 minutes to 36 hours. This is good from a security viewpoint, as it reduces the time window for abuse in case of lost or stolen temporary tokens.
  • API Access: Temporary tokens can call any service that the original credential (that created the temporary token) has privileges for, except that:
  • within STS, temporary tokens can only call the AssumeRole API call.
  • within IAM, MFA is required.

These restrictions may not necessarily constrain attackers, since there are a large number of services that support AssumeRole [1], which combined with numerous techniques for escalating privileges [2], creates a large attack surface for lateral movement from temporary tokens to other privileged roles.

Attack Scenario

To highlight the challenges when temporary tokens are used in an attack, let’s look at a simple attack scenario. The environment has support personnel who must manage production S3 buckets, and the organization has created a specific role, MyBucketRole, that is assumed by support personnel whenever the need arises for S3 bucket support.

Attack Scenario Utilizing Temporary Tokens
Figure 2: Attack Scenario Utilizing Temporary Tokens

The Attacker:

  1. Gains initial access to the environment with stolen credentials (access key A) which was accidentally hard-coded into a script that was uploaded to Git by a support person.
  2. Generates a temporary token B using the stolen credentials (access key A) with a call to STS GetSessionToken, for persistent access i.e., backdoor access. This is not used immediately but is saved for redundant access and will be used in a secondary attack, and we will see shortly why it has different challenges than permanent keys and other temporary tokens generated by AssumeRole.
  3. Uses access key A to escalate privileges by assuming a role, MyBucketRole, that has access to an S3 Bucket. This returns temporary token C, which when used will have the permissions of MyBucketRole.
  4. Accesses sensitive data on the S3 Bucket using temporary token C.
  5. Exfiltrates data from the S3 Bucket (e.g. S3 sync to another S3 bucket)

The initial compromise and attack vector in this scenario is the compromised credential. The use of temporary tokens does not change this risk profile but it will make the detection, mitigation, and prevention steps different or more challenging, which we cover in the next section.

Defender Viewpoint

Let’s look at this attack from the defender’s viewpoint to understand any challenges that stem from the use of temporary tokens by the attacker. We’re in the middle of the attack, we’re alerted to suspicious data access patterns during the exfiltration phase, and we’ve found out that a support user called AssumeRole and is performing data exfiltration.

Detection and Remediation

1 – Delete Compromised Key A

We immediately delete or make inactive the compromised access key A, regenerate new keys, ensure key rotation is enabled:

Remediating Permanent Keys
Figure 3: Remediating Permanent Keys

Additionally, we can discuss with the support user how they can better secure their API keys and send him/her to security training if necessary.

This should at least kick out our attacker, right? Not quite.

2 – Alerts on Continued Access with Temporary Token C

We find that the data exfiltration continues because the temporary token C created by AssumeRole still exists and is valid for up to 36 hours.

CloudTrail Event for Temporary Token Use
Figure 4: CloudTrail Event for Temporary Token Use

Any access key ids will start with “ASIA”, which is the naming convention that distinguishes temporary tokens from permanent tokens (”AKIA”). [3] There is no explicit attribute to distinguish a temporary token vs access key. There is also nothing in this event that ties the temporary token back to the principal that created it — that information is contained in a different event that captures the creation of the temporary token.

3 – Mitigate by Revoking Active Sessions for Temporary Token C

Although there is no way to list, directly delete, or deactivate temporary tokens, there is a workaround. We can revoke active sessions associated with a Role i.e., sessions started by AssumeRole. The policy can be set in the Revoke sessions tab for the role assumed by the attacker (IAM service):

AWS Console Tab for Revoke Active Sessions for a Role
Figure 5: AWS Console Tab for Revoke Active Sessions for a Role

It implements a policy condition that denies any API call if the token was created earlier than the time you put the policy in place [6].

We should be done now, right? Not yet.

4 – Alerts on Continued Access with New Temporary Tokens

We continue to see data exfiltration using an AssumedRole temporary token but that is different from temporary token C:

Data Exfiltration Using AssumedRole Temporary Tokens
Figure 6: Data Exfiltration Using AssumedRole Temporary Tokens

Where are these coming from?

5 – Discover Temporary Token B

The problem is temporary token B, which is repeatedly calling AssumeRole to generate new tokens:

CloudTrail Event for Creation of Temporary Token by AssumeRole
Figure 7: CloudTrail Event for Creation of Temporary Token by AssumeRole

These new temporary tokens have creation timestamps that are newer than what was set in the Revoke active sessions policy in step #3, so they are not denied.

We could do the Revoke active sessions step again (step #3) which will update the timestamp to the current time, but that doesn’t stop the attacker, who can keep calling AssumeRole

Should we delete temporary token B, as in step #1? Unfortunately, we can’t because it’s not a permanent key, and there are no API calls or Console actions to list or delete temporary tokens.

Should we try to contain it using Revoke active sessions, which worked in step #3? Unfortunately, Revoke active sessions works only for Roles i.e. it’s only available to control sessions from tokens created with AssumeRole. It doesn’t apply to or work for temporary tokens created by GetSessonToken

What now?

6 – Delete User or Change Permissions

The recommended ways to remediate temporary tokens created by GetSessonToken, are to:

  1. Change/restrict the privileges (policies) for the user or role that created the token since the temporary token creates a session with the current privileges of the user/role at the time of use (not creation) [4].
  2. Delete the user [5], which will immediately delete all temporary tokens associated with that user. 

The user in question is the IAM user who created the temporary token i.e. the support user. So, in order to be safe, we delete the user. Hopefully, we have Cloud Formation Templates or other ways to recreate the user easily. For a single user, this may be ok. However, if the IAM User is used as a service account and has many active sessions, then deleting the user will immediately cancel all active sessions, which can have a large negative impact. 

We have finally kicked the attacker out of our AWS environment by deleting or mitigating all compromised credentials! Now, let’s look at how we can lockdown the environment to prevent this happening in the first place.

Prevention

1 – Prevent Creation of Temporary Tokens by AssumeRole

We can use IAM policies to limit who can call AssumeRole by limiting the trust relationship of the role. 

Role Trust Relationship
Figure 8: Role Trust Relationship

In this example, only support_user is able to assume MyBucketRole — no other roles, users, or other principals can assume this role.  

2 – Alert on Creation of Temporary Tokens by GetSessionToken

How about preventing GetSessionToken? Unfortunately, we cannot restrict or prevent calls to GetSessionToken, as explained in the IAM User Guide [7]:

IAM users can also call GetSessionToken to create temporary security credentials. No permissions are required for a user to call GetSessionToken. The purpose of this operation is to authenticate the user using MFA. You cannot use policies to control authentication. This means that you cannot prevent IAM users from calling GetSessionToken to create temporary tokens.

Instead, we can focus on alerts based on early detection. Since GetSessionToken‘s primary use is to MFA enable a token that can be used to call MFA-protected API calls, it should occur much less frequently in your environment.

CloudTrail Event For GetSessionToken
Figure 9: CloudTrail Event For GetSessionToken

You can distinguish MFA GetSessionToken calls by looking for the existence of requestParameters.serialNumber.

Note: Alerting on sts:AssumeRole calls is not useful because of false positives since it is validly and widely used by many services [1].

3 – Mitigate Compromised Permanent Keys

Using MFA and/or IP/VPC allow listing in IAM policies will reduce the probability of downstream abuse from temporary tokens.

MFA Condition in IAM Policy
Figure 10: MFA Condition in IAM Policy
Source IP Condition in IAM Policy
Figure 11: Source IP Condition in IAM Policy

4 – Mitigate Compromised EC2 Temporary Tokens

Dynamic allow listing the source IPs of temporary tokens generated by sts:AssumeRole (see example from the Netflix Security team[8]) can help contain and minimize the impact of stolen temporary tokens since the tokens can only be used from the EC2 instance. The tradeoff is the time and resources required to maintain additional code, which may introduce additional security bugs or vulnerabilities. Additionally, this does not prevent the stolen credentials from being used from the EC2 instance itself.

Summary

Temporary tokens are just one way an attacker can maintain persistence, evade defenses, and escalate privileges in your environment. Because they differ from permanent keys in how they are detected, remediated, and prevented, you want to take appropriate measures to manage this risk.

In the attack scenario above, you need to detect whether temporary tokens have been used by an attacker and what type of tokens they are. For those created by AssumeRole, you can revoke active sessions. For those created by GetSessionToken, you must delete the user or restrict its permissions. To prevent credential compromise, restrict the use of permanent keys with source IP allow listing and/or MFA, restrict the trust relationships for roles that are assumed, and consider a metadata proxy (IP allow listing) for EC2-generated temporary credentials.

This table summarizes the specific defensive measures you can use to prevent, detect, and remediate temporary tokens (AssumeRole and GetSessionToken) as well as permanent keys:

Table 1: Defensive Measures for Permanent and Temporary Credentials
Table 1: Defensive Measures for Permanent and Temporary Credentials

Netskope provides support in preventing abuse with continuous security assessment checks, detection with inline and API introspection, and custom auto-remediation commands.

For an attack chain perspective on managing Temporary Tokens, see our blog post: MITRE Att&ck View: Securing AWS Temporary Tokens.

This blog post is based on talks given at:

  • Defcon 27 on August 10, 2019. Slides are linked here.
  • AWS Community Day 2019, Bay Area on September 13, 2019. A recorded video of the presentation is here.

References

[1] AWS Identity and Access Management: AWS Services That Work with IAM

[2] “AWS IAM Privilege Escalation – Methods and Mitigation,” S.Gietzen, Rhino Security Labs.

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/

[3] “Managing Access Keys for IAM Users: Auditing Access Keys,” AWS Identity and Access Management User Guide, AWS.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_access-keys-audit

[4] “Disabling Permissions for Temporary Security Credentials,” AWS Identity and Access Management User Guide, AWS.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_disable-perms.html

[5] “My AWS account might be compromised,” Knowledge Center, AWS, October 2019.

https://aws.amazon.com/premiumsupport/knowledge-center/potential-account-compromise/

[6] “Revoking IAM Role Temporary Security Credentials,” AWS Identity and Access Management User Guide, AWS.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_revoke-sessions.html

[7] “Granting Permissions to Create Temporary Security Credentials,” AWS Identity and Access Management User Guide, AWS.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_enable-create.html

[8] “Netflix Information Security: Preventing Credential Compromise in AWS,” W.Bengtson, Netflix Security Tools and Operations, November 2018.

https://medium.com/netflix-techblog/netflix-information-security-preventing-credential-compromise-in-aws-41b112c15179

author image
Jenko Hwong
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.

Stay informed!

Suscríbase para recibir lo último del blog de Netskope