Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

cerrar
cerrar
  • Por qué Netskope chevron

    Cambiar la forma en que las redes y la seguridad trabajan juntas.

  • Nuestros clientes chevron

    Netskope atiende a más de 3.400 clientes en todo el mundo, incluidos más de 30 de las 100 empresas más importantes de Fortune

  • Nuestros Partners chevron

    Nos asociamos con líderes en seguridad para ayudarlo a asegurar su viaje a la nube.

Líder en SSE. Ahora es líder en SASE de un solo proveedor.

Descubre por qué Netskope debutó como Líder en el Cuadrante Mágico de Gartner® 2024 para Secure Access Service Edge (SASE) de Proveedor Único.

Obtenga el informe
Clientes de Netskope Casos de éxito

Lea cómo los clientes innovadores navegan con éxito por el cambiante panorama actual de las redes y la seguridad a través de la Plataforma Netskope One.

Obtenga el eBook
Clientes de Netskope Casos de éxito
La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.

Más información sobre los socios de Netskope
Grupo de jóvenes profesionales diversos sonriendo
Tu red del mañana

Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.

Obtenga el whitepaper
Tu red del mañana
Netskope Cloud Exchange

Cloud Exchange (CE) de Netskope ofrece a sus clientes herramientas de integración eficaces para que saquen partido a su inversión en estrategias de seguridad.

Más información sobre Cloud Exchange
Vista aérea de una ciudad
  • Security Service Edge chevron

    Protéjase contra las amenazas avanzadas y en la nube y salvaguarde los datos en todos los vectores.

  • SD-WAN chevron

    Proporcione con confianza un acceso seguro y de alto rendimiento a cada usuario remoto, dispositivo, sitio y nube.

  • Secure Access Service Edge chevron

    Netskope One SASE proporciona una solución SASE nativa en la nube, totalmente convergente y de un único proveedor.

La plataforma del futuro es Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) y Private Access for ZTNA integrados de forma nativa en una única solución para ayudar a todas las empresas en su viaje hacia la arquitectura Secure Access Service Edge (SASE).

Todos los productos
Vídeo de Netskope
Next Gen SASE Branch es híbrida: conectada, segura y automatizada

Netskope Next Gen SASE Branch converge Context-Aware SASE Fabric, Zero-Trust Hybrid Security y SkopeAI-Powered Cloud Orchestrator en una oferta de nube unificada, marcando el comienzo de una experiencia de sucursal completamente modernizada para la empresa sin fronteras.

Obtenga más información sobre Next Gen SASE Branch
Personas en la oficina de espacios abiertos.
Arquitectura SASE para principiantes

Obtenga un ejemplar gratuito del único manual que necesitará sobre diseño de una arquitectura SASE.

Obtenga el eBook
Libro electrónico de arquitectura SASE para principiantes
Cambie a los servicios de seguridad en la nube líderes del mercado con una latencia mínima y una alta fiabilidad.

Más información sobre NewEdge
Autopista iluminada a través de las curvas de la ladera de la montaña
Habilite de forma segura el uso de aplicaciones de IA generativa con control de acceso a aplicaciones, capacitación de usuarios en tiempo real y la mejor protección de datos de su clase.

Descubra cómo aseguramos el uso generativo de IA
Habilite de forma segura ChatGPT y IA generativa
Soluciones de confianza cero para implementaciones de SSE y SASE

Más información sobre Confianza Cero
Conducción en barco en mar abierto
Netskope logra la alta autorización FedRAMP

Elija Netskope GovCloud para acelerar la transformación de su agencia.

Más información sobre Netskope GovCloud
Netskope GovCloud
  • Recursos chevron

    Obtenga más información sobre cómo Netskope puede ayudarle a proteger su viaje hacia la nube.

  • Blog chevron

    Descubra cómo Netskope permite la transformación de la seguridad y las redes a través del perímetro de servicio de acceso seguro (SASE)

  • Eventos y Talleres chevron

    Manténgase a la vanguardia de las últimas tendencias de seguridad y conéctese con sus pares.

  • Seguridad definida chevron

    Todo lo que necesitas saber en nuestra enciclopedia de ciberseguridad.

Podcast Security Visionaries

Predicciones para 2025
En este episodio de Security Visionaries, nos acompaña Kiersten Todt, presidenta de Wondros y ex jefa de personal de la Agencia de Seguridad de Infraestructura y Ciberseguridad (CISA), para analizar las predicciones para 2025 y más allá.

Reproducir el pódcast Ver todos los podcasts
Predicciones para 2025
Últimos blogs

Lea cómo Netskope puede habilitar el viaje hacia Zero Trust y SASE a través de las capacidades de perímetro de servicio de acceso seguro (SASE).

Lea el blog
Amanecer y cielo nublado
SASE Week 2024 bajo demanda

Aprenda a navegar por los últimos avances en SASE y Zero Trust y explore cómo estos marcos se están adaptando para abordar los desafíos de ciberseguridad e infraestructura

Explorar sesiones
SASE Week 2024
¿Qué es SASE?

Infórmese sobre la futura convergencia de las herramientas de red y seguridad en el modelo de negocio actual de la nube.

Conozca el SASE
  • Empresa chevron

    Le ayudamos a mantenerse a la vanguardia de los desafíos de seguridad de la nube, los datos y la red.

  • Ofertas de Trabajo chevron

    Únase a los +3,000 increíbles miembros del equipo de Netskopeque construyen la plataforma de seguridad nativa en la nube líder en el sector.

  • Soluciones para clientes chevron

    Le apoyamos en cada paso del camino, garantizando su éxito con Netskope.

  • Formación y Acreditaciones chevron

    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube.

Apoyar la sostenibilidad a través de la seguridad de los datos

Netskope se enorgullece de participar en Vision 2045: una iniciativa destinada a crear conciencia sobre el papel de la industria privada en la sostenibilidad.

Descubra más
Apoyando la sustentabilidad a través de la seguridad de los datos
Ayude a dar forma al futuro de la seguridad en la nube

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Únete al equipo
Empleo en Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Ir a Soluciones para clientes
Servicios profesionales de Netskope
Asegure su viaje de transformación digital y aproveche al máximo sus aplicaciones en la nube, web y privadas con la capacitación de Netskope.

Infórmese sobre Capacitaciones y Certificaciones
Grupo de jóvenes profesionales que trabajan

New Yokai Side-loaded Backdoor Targets Thai Officials

Dec 13 2024

Summary

DLL side-loading is a popular technique used by threat actors to execute malicious payloads under the umbrella of a benign, usually legitimate, executable. This allows the threat actor to exploit whitelists in security products that exclude trusted executables from detection. Among others, this technique has been leveraged by APT41 to deploy DUSTTRAP and Daggerfly to deliver Nightdoor backdoor.

During threat hunting activities, the Netskope team discovered a legitimate iTop Data Recovery application side-loading a backdoor we named Yokai that, to the best of our knowledge, has not been publicly documented yet. In this blog we will analyze the infection chain and dive deep into the internals of the Yokai backdoor.

Decoy documents

During our threat hunting activities, we discovered a RAR file that contained two LNK shortcut files named in Thai, named กระทรวงยุติธรรมสหรัฐอเมริกา.pdf and ด่วนที่สุด ทางการสหรัฐอเมริกาขอความร่วมมือระหว่างประเทศในเรื่องทางอาญา.docx. Translated, both documents are called “United States Department of Justice.pdf” and “Urgently, United States authorities ask for international cooperation in criminal matters.docx” respectively.

Clicking the shortcut files triggers the copying of content from an alternate data stream (ADS) named “file.exf” into decoy PDF and Word documents using esentutl.Esentutl is a Windows binary commonly abused to transfer malicious payload from alternate data streams.

After the copying is complete, the shortcut files open the decoy documents, giving the impression that their sole purpose is to display harmless content.

Dropper emerges from an alternate data stream

The shortcut file with a DOCX extension contains two data streams: the “file.exf” which is used to create a decoy document, and “file.ext” which contains the malicious payload.

The malicious payload is copied to an executable named “file.exe” using esentutl. If successful, the command prompt launches “file.exe” using start command.

Upon execution of file.exe, it drops three files on the folder path C:\ProgramData\police. IdrInit.exe is a legitimate iTop Data Recovery application abused to side-load the malicious DLL ProductStatistics3.dll. IdrInit.exe is executed by file.exe. The file IdrInit.exe.data contains information sent by the C2. The contents will be described later in this blog.

Yokai Backdoor

Upon execution, IdrInit.exe side-loads the Yokai backdoor (ProductStatistics3.dll) and calls the “SetStatParam3” function from it. This function is simply a wrapper around the malicious “pfc_init” function.

In another variant of this backdoor, we found a PDB string “E:\Project\YK0163\src\YK0163_v2.0.0\YK0163\Release\EACore.pdb”, which we used as an inspiration to name this backdoor, “Yokai”.

Scheduled task and duplicate executions

If IdrInit.exe is executed as a non-admin user, Yokai creates a scheduled task, even if it already exists, named “MicrosoftTSUpdate” which executes IdrInit.exe every five minutes.

cmd.exe /c schtasks /create /f /sc MINUTE /MO 5 /tn "MicrosoftTSUpdate" /tr <path_to_IdrInit.exe>

If IdrInit.exe is executed as an admin user, it spawns a copy of itself. Each spawned process, in turn, spawns its own copy, and so on. If the number of spawned processes continuously increases, it could negatively impact system performance and raise likelihood of detection. Additionally, this behavior would be clearly visible if the user inspected the processes running on their system, further reducing the stealth aspect of the malware.

Mutex creation

Yokai looks for the presence of a mutex named “Mutex_Local_Windows_1547”. If it exists, control returns to IdrInit.exe and it terminates itself; otherwise, the mutex is created. Malware often uses mutexes as a mechanism to avoid duplicate executions on a host it has already compromised. It would have been a better design choice to first check for the existence of the mutex before creating a scheduled task or spawning processes, as described earlier.

Check-in with the C2

Yokai collects the hostname and username of the logged-in user. A string “2.2.0” was also found hardcoded and the PDB string mentioned earlier had the substring “2.0.0” in it. We believe this string indicates the version of the malware.

The data is then formatted into the following 156-byte block:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Malware version

(16 bytes)
Username

(64 bytes)
Hostname

(64 bytes)

The first byte serves as a checksum calculated over the remaining data. (The API-INDEX value will be described later in this blog.) The sequence number represents a 0-indexed count of the backdoor’s communication interactions with the C2, incrementing by 1 with each new successful exchange.

The checksum is calculated via XOR operations, which, although unreliable, do provide basic error detection. This is calculated in the following manner:

def calculate_checksum(data):
for i in range(1, len(data)):
data[0] ^= data[i]
# The first byte of the data is the checksum
return data[0]

The data is then encrypted using a series of XOR operations with a hardcoded key, “ExtensionsWindow”. The algorithm is shown below:

def encrypt_data(plaintext, key):
encrypted1 = b""
for i in range(0, len(plaintext)):
encrypted1 += (plaintext[i] ^ key[i & 0xF]).to_bytes(1, "little")
encrypted2 = b""
for i in range(1, len(encrypted1)+1):
encrypted2 += (encrypted1[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
return encrypted2

The encrypted data is transmitted to the first available C2, which is one of the following in order:

  • 122.155.28[.]155:80/page/index.php
  • 154.90.47[.]77:80/

In another variant, we observed traffic going to port 443. The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEX0
Accept-Connect0
Content-Length156

The C2 response is encrypted in the same manner and with the same encryption key as before. It can be decrypted as follows:

def decrypt_data(encrypted, key):
decrypted1 = b""
for i in range(1, len(encrypted)+1):
decrypted1 += (encrypted[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
decrypted2 = b""
for i in range(0, len(decrypted1)):
decrypted2 += (decrypted1[i] ^ key[i & 0xF]).to_bytes(1, "little")
return decrypted2

The decrypted C2 response must satisfy checksum validation, be exactly 28 bytes in size, and have a value of 1 in the 4th byte. It has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
API-INDEX

(4 bytes)
New encryption key

(16 bytes)

The value of “API-INDEX” sent by the C2 is written to a file named “IdrInit.exe.data” in the same directory as IdrInit.exe. This value is used for the “API-INDEX” HTTP header in subsequent C2 communications. While we do not know the intention behind this header, it could be a mechanism to uniquely identify a compromised host as determined by the C2. The C2 also provides a new encryption key to be used for encrypting data before exfiltration.

C2 command codes

Yokai now enters a loop of processing commands sent by the C2 and data exfiltration. Its traffic to the C2 has the following structure:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Exfiltrated data

(Optional)

The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEXPreviously sent by the C2
Accept-Connect1

For example, in the snapshot below, the traffic on the left represents an empty payload being sent to the C2, indicating idle time, while the traffic on the right represents data exfiltration.

The C2 response has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
Shell commands to execute

(Optional)

The sequence number sent by the C2 must match the sequence number previously sent by Yokai. Otherwise, it checks if the sequence number sent by the C2 is one behind the sequence number previously sent by Yokai. If so, it retransmits; otherwise, it restarts the entire C2 communication process.

The table below summarizes the supported command codes:

Command codeFunction
1Represents the C2 ACK to the check-in traffic first sent by Yokai. A new encryption key and API-INDEX value is also sent by the C2.
3Spawns cmd[.]exe and attaches its STDIN and STDOUT to anonymous pipes.
4Execute shell commands by writing to pipes associated with the previously spawned cmd[.]exe.
2Do nothing
5Undetermined

Conclusions

In this blog, we walked through an infection chain that leveraged a RAR file that contained two LNK files. While one of them had a decoy PDF document embedded in its alternate data stream, the other embedded a decoy DOCX document and a malware dropper executable. It dropped a legitimate iTop Data Recovery application along with the side-loaded Yokai backdoor, offering console access to the threat actor.

DLL side-loading continues to be a popular technique leveraged by threat actors. Netskope will continue to track the evolution of the Yokai backdoor.

Recommendations

Netskope recommends that organizations review their security policies to ensure that they are adequately protected against malware:

  • Inspect all HTTP and HTTPS traffic, including all web and cloud traffic, to prevent systems from communicating with malicious domains and IP addresses. Netskope customers can configure their Netskope NG-SWG with a URL filtering policy to block known malicious domains, and a threat protection policy to inspect all web content to identify malicious content using a combination of signatures, threat intelligence, and machine learning.
  • Use Remote Browser Isolation (RBI) technology to provide additional protection when there is a need to visit websites that fall into categories that can present higher risk, like Newly Observed and Newly Registered Domains.

Netskope Detection

  • Netskope Threat Protection
    • RAR: Shortcut.Trojan.Pantera
    • LNK: Shortcut.Trojan.Pantera
    • Dropper:
      • Trojan.Generic.37082949
      • Gen.Detect.By.NSCloudSandbox.tr
    • Yokai Backdoor:
      • Win32.Trojan.Generic
      • Gen:Variant.Lazy.572161
      • Gen:Variant.Mikey.170188
      • Trojan.Generic.37080167
  • Netskope Intrusion Prevention System
    • Yokai Backdoor C2 traffic:
      • SID 170111: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected
      • SID 170112: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected

MITRE ATT&CK Techniques

TacticTechnique
TA0002: ExecutionT1053: Scheduled Task/Job

T1559: Inter-Process Communication
TA0005: Defense EvasionT1564.004: Hide Artifacts: NTFS File Attributes

T1036: Masquerading

T1574.002: Hijack Execution Flow: DLL Side-Loading

T1480.002: Execution Guardrails: Mutual Exclusion
TA0011: Command and ControlT1071.001: Application Layer Protocol: Web Protocols

T1573.001: Encrypted Channel: Symmetric Cryptography

IOCs

All the IOCs and scripts related to this malware can be found in our GitHub repository.

author image
Nikhil Hegde
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
author image
Jan Michael Alcantara
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.

Stay informed!

Suscríbase para recibir lo último del blog de Netskope