Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

cerrar
cerrar
  • Por qué Netskope chevron

    Cambiar la forma en que las redes y la seguridad trabajan juntas.

  • Nuestros clientes chevron

    Netskope atiende a más de 3.400 clientes en todo el mundo, incluidos más de 30 de las 100 empresas más importantes de Fortune

  • Nuestros Partners chevron

    Nos asociamos con líderes en seguridad para ayudarlo a asegurar su viaje a la nube.

Líder en SSE. Ahora es líder en SASE de un solo proveedor.

Descubre por qué Netskope debutó como Líder en el Cuadrante Mágico de Gartner® 2024 para Secure Access Service Edge (SASE) de Proveedor Único.

Obtenga el informe
Testimonios de Clientes

Lea cómo los clientes innovadores navegan con éxito por el cambiante panorama actual de las redes y la seguridad a través de la Plataforma Netskope One.

Obtenga el eBook
Testimonios de Clientes
La estrategia de venta centrada en el partner de Netskope permite a nuestros canales maximizar su expansión y rentabilidad y, al mismo tiempo, transformar la seguridad de su empresa.

Más información sobre los socios de Netskope
Grupo de jóvenes profesionales diversos sonriendo
Tu red del mañana

Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.

Obtenga el whitepaper
Tu red del mañana
Netskope Cloud Exchange

Cloud Exchange (CE) de Netskope ofrece a sus clientes herramientas de integración eficaces para que saquen partido a su inversión en estrategias de seguridad.

Más información sobre Cloud Exchange
Vista aérea de una ciudad
  • Security Service Edge chevron

    Protéjase contra las amenazas avanzadas y en la nube y salvaguarde los datos en todos los vectores.

  • SD-WAN chevron

    Proporcione con confianza un acceso seguro y de alto rendimiento a cada usuario remoto, dispositivo, sitio y nube.

  • Secure Access Service Edge chevron

    Netskope One SASE proporciona una solución SASE nativa en la nube, totalmente convergente y de un único proveedor.

La plataforma del futuro es Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) y Private Access for ZTNA integrados de forma nativa en una única solución para ayudar a todas las empresas en su viaje hacia la arquitectura Secure Access Service Edge (SASE).

Todos los productos
Vídeo de Netskope
Next Gen SASE Branch es híbrida: conectada, segura y automatizada

Netskope Next Gen SASE Branch converge Context-Aware SASE Fabric, Zero-Trust Hybrid Security y SkopeAI-Powered Cloud Orchestrator en una oferta de nube unificada, marcando el comienzo de una experiencia de sucursal completamente modernizada para la empresa sin fronteras.

Obtenga más información sobre Next Gen SASE Branch
Personas en la oficina de espacios abiertos.
Arquitectura SASE para principiantes

Obtenga un ejemplar gratuito del único manual que necesitará sobre diseño de una arquitectura SASE.

Obtenga el eBook
Libro electrónico de arquitectura SASE para principiantes
Cambie a los servicios de seguridad en la nube líderes del mercado con una latencia mínima y una alta fiabilidad.

Más información sobre NewEdge
Autopista iluminada a través de las curvas de la ladera de la montaña
Habilite de forma segura el uso de aplicaciones de IA generativa con control de acceso a aplicaciones, capacitación de usuarios en tiempo real y la mejor protección de datos de su clase.

Descubra cómo aseguramos el uso generativo de IA
Habilite de forma segura ChatGPT y IA generativa
Soluciones de confianza cero para implementaciones de SSE y SASE

Más información sobre Confianza Cero
Conducción en barco en mar abierto
Netskope logra la alta autorización FedRAMP

Elija Netskope GovCloud para acelerar la transformación de su agencia.

Más información sobre Netskope GovCloud
Netskope GovCloud
  • Recursos chevron

    Obtenga más información sobre cómo Netskope puede ayudarle a proteger su viaje hacia la nube.

  • Blog chevron

    Descubra cómo Netskope permite la transformación de la seguridad y las redes a través del perímetro de servicio de acceso seguro (SASE)

  • Eventos y Talleres chevron

    Manténgase a la vanguardia de las últimas tendencias de seguridad y conéctese con sus pares.

  • Seguridad definida chevron

    Todo lo que necesitas saber en nuestra enciclopedia de ciberseguridad.

Podcast Security Visionaries

Predicciones para 2025
En este episodio de Security Visionaries, nos acompaña Kiersten Todt, presidenta de Wondros y ex jefa de personal de la Agencia de Seguridad de Infraestructura y Ciberseguridad (CISA), para analizar las predicciones para 2025 y más allá.

Reproducir el pódcast Ver todos los podcasts
Predicciones para 2025
Últimos blogs

Lea cómo Netskope puede habilitar el viaje hacia Zero Trust y SASE a través de las capacidades de perímetro de servicio de acceso seguro (SASE).

Lea el blog
Amanecer y cielo nublado
SASE Week 2024 bajo demanda

Aprenda a navegar por los últimos avances en SASE y Zero Trust y explore cómo estos marcos se están adaptando para abordar los desafíos de ciberseguridad e infraestructura

Explorar sesiones
SASE Week 2024
¿Qué es SASE?

Infórmese sobre la futura convergencia de las herramientas de red y seguridad en el modelo de negocio actual de la nube.

Conozca el SASE
  • Empresa chevron

    Le ayudamos a mantenerse a la vanguardia de los desafíos de seguridad de la nube, los datos y la red.

  • Ofertas de Trabajo chevron

    Únase a los +3,000 increíbles miembros del equipo de Netskopeque construyen la plataforma de seguridad nativa en la nube líder en el sector.

  • Soluciones para clientes chevron

    Le apoyamos en cada paso del camino, garantizando su éxito con Netskope.

  • Formación y Acreditaciones chevron

    La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube.

Apoyar la sostenibilidad a través de la seguridad de los datos

Netskope se enorgullece de participar en Vision 2045: una iniciativa destinada a crear conciencia sobre el papel de la industria privada en la sostenibilidad.

Descubra más
Apoyando la sustentabilidad a través de la seguridad de los datos
Ayude a dar forma al futuro de la seguridad en la nube

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Únete al equipo
Empleo en Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Ir a Soluciones para clientes
Servicios profesionales de Netskope
Asegure su viaje de transformación digital y aproveche al máximo sus aplicaciones en la nube, web y privadas con la capacitación de Netskope.

Infórmese sobre Capacitaciones y Certificaciones
Grupo de jóvenes profesionales que trabajan

Hive Ransomware: Actively Targeting Hospitals

Sep 10 2021

Summary

Most ransomware groups operating in the RaaS (Ransomware-as-a-Service) model have an internal code of ethics that includes avoiding breaching some specific sectors, such as hospitals or critical infrastructure, thus avoiding great harm to society and consequently drawing less attention from law enforcement. For example, the BlackMatter ransomware states they are not willing to attack hospitals, critical infrastructure, defense industry, non-profit companies, and oil and gas industry targets, having learned from the mistakes of other groups, such as DarkSide, who shut down its operations after the Colonial Pipeline attack.

However, this code of ethics is not always adopted by attackers, as is the case with Hive, a new family of ransomware discovered in June 2021. On August 15, 2021, Hive ransomware was responsible for an attack against the Memorial Health System, a non-profit integrated health system with three hospitals in Ohio and West Virginia (Marietta Memorial Hospital, Selby General Hospital, and Sistersville General Hospital), causing radiology exams and surgical cases to be canceled. According to the FBI, the group uses phishing emails with malicious attachments to gain access into networks, allowing the attackers to move laterally over the network to steal data and infect more machines.

HiveLeaks

In addition to encrypting files, Hive also steals sensitive data from networks, threatening to publish everything in their HiveLeak website, hosted on the deep web, which is a common practice among ransomware working in this double extortion scheme.

There are two websites maintained by the group, the first one is protected by username and password, accessible only by the victims who obtain the credentials in the ransom note.

Figure 01. Hive ransomware private website

Once authenticated, the victim can see:

  1. The name of the infected organization;
  2. A live chat, where the victim can interact with the attackers;
  3. A file upload system, where the victim can send files to the attackers;
  4. A link to Hive’s decryption software, if the ransom is paid by the victims.
Figure 02. Victim’s private website by Hive ransomware

The second website, “HiveLeaks,” is where the attackers publish data about their targets and is publicly accessible.

Figure 03. “HiveLeaks” logo.

For each target, you can see the name, a small description, the website, the revenue, and the number of employees at the company. Also, you can see two dates, when the files were encrypted and when the attack was made public. Curiously enough, there are also two social media buttons where you can share this information.

Figure 04. Information about the infected company on the “HiveLeaks” website.

If any data is published by the attackers, you will also find a link where the files can be downloaded. Hive uses common file-sharing services for this purpose, such as PrivatLab, AnonFiles, MEGA, UFile, SendSpace, and Exploit.in, as shown in Figure 05.

Figure 05. Links to download stolen data by Hive.

Memorial Health System Attack

The Hive ransomware infected the Memorial Health System (MHS) on August 15, 2021. The attackers claim to have stolen patient data including names, social security numbers, dates of birth, addresses and phone numbers, and medical histories for 200,000 patients, and an additional 1.2 TB of other data.

MHS tried to appeal to the attackers to provide the decrypter for free but ultimately ended up paying 1.8M, divided equally into two Bitcoin wallets. The attackers moved the Bitcoins to another wallet just a few minutes after the transaction was made by MHS.

Aside from the decryptor, the attackers also promise a security report, a file tree describing all stolen data, and the logs proving that they had erased everything from their servers.

Analysis

The ransomware was written in Go, an open-source programming language that allows cross-compilation, meaning that the same source code can be compiled to different OS, such as Linux, Windows, and macOS.

Although we have only seen Windows versions in the wild at this point, we have strong indications that the group is able to infect other systems such as Linux, as well as the Hypervisor ESXi, as we will demonstrate later in the analysis.

We have analyzed two different samples, being 32 and 64-bit Windows versions of the malware. Both of them are packed with UPX, which is an open-source executable packer.

Figure 06. Main Hive ransomware payload, packed with UPX.

The first thing we noticed is that both samples we analyzed had a command line interface (CLI), accepting parameters and also showing log messages throughout the malware execution.

The 64-bit sample accepts two parameters:

  • kill: Kill processes specified as value (case insensitive regex)
  • stop: Stop services specified as value (case insensitive regex)
Figure 07. Parameters accepted by the 64-bit sample of Hive.

On the other hand, the 32-bit sample offers three more options:

  • kill: Kill processes specified as value (case insensitive regex)
  • no-clean: Do not clean disk space (described later in this analysis)
  • skip: Files that the attacker doesn’t want to encrypt (case insensitive regex)
  • skip-before: Skips files created before the specified date.

stop: Stop services specified as value (case insensitive regex)

Figure 08. Parameters accepted by the 32-bit sample of Hive.

Aside from the parameters above, the attacker can also specify the path containing the files that need to be encrypted. If this path isn’t specified, the ransomware will list all the files in the machine, skipping the ones specified in the “-skip” and “-skip-before” parameters.

For analysis purposes, we have created a folder named “C:\to_encrypt”, containing three different pictures. Once executed, the ransomware starts printing out log messages throughout the whole encryption process.

Figure 09. 32-bit Hive ransomware execution.

The log messages show pretty much everything the malware is doing, however, let’s take a look at each one of the aspects being printed out.

Analyzing this 32-bit sample closely, we can see some of the function names parsed by the disassembler, from a package the attackers named as “google.com”, perhaps as an attempt to deceive the analyst.

Figure 10. 32-bit Hive function names.

First, the malware calls a function encryptor.NewApp().

Figure 11. “NewApp” Hive function.

Simply put, this function initializes some important data used by the ransomware, such as the primary key.

Figure 12. “NewApp” function flow.

The function keys.NewPrimaryKey() generates a 10 MB random key used in the encryption process.

Figure 13. 10 MB key generated by Hive.

Once the key is generated, the ransom note and a batch script are loaded into memory, which will be eventually saved to the disk during the process.

After this setup is completed, the ransomware calls a function named App.Run(), which starts the flow we saw in the log messages.

Figure 14. Hive “Run” function.

The first function called inside App.Run() is App.ExportKey().

Figure 15. “ExportKey” function.

This function is responsible for encrypting the 10 MB key generated by keys.NewPrimaryKey().

Figure 16. Main flow of “ExportKey” function.

Hive contains 100 public RSA keys embedded in the binary, which are used to encrypt the key generated previously. They are all parsed through the function ParsePKCS1PublicKey from the pkcs1.go library.

Figure 17. Hive ransomware loading public RSA keys.

The malware then encrypts the data using the EncryptOAEP function from the rsa.go library.

Figure 18. Hive encrypting the key using RSA.

The encrypted key is then saved into a file that ends with “.key.hive” extension (or “key.<random>” for the 64-bit version). This is the file that is eventually loaded by the decryptor to retrieve the encryption key used in the process.

Figure 19. Key file saved by Hive during the process.

After creating the encrypted key, the malware calls two functions named App.KillProcesses() and App.StopServices().


Figure 20. Hive functions to kill processes and stop services.

The name of these functions are self-explanatory, and the full list of default values for stopped processes and services can be found in our GitHub repository.

Next, Hive executes the functions App.RemoveItself() and App.RemoveShadowCopies().

Figure 21. Next two functions executed by the “Run”.

The first one is responsible for creating a batch script that was loaded into memory by the function encryptor.NewApp(). The purpose of this script is to delete the ransomware payload once this process is done.

Figure 27. Batch script created by Hive to delete the payload from disk
Figure 22. Batch script created by Hive to delete the payload from disk

The second function creates another batch script in disk that is responsible for deleting Windows Shadow Copies, to prevent any file restoration.

Figure 23. “shadow.bat” script created by the 32-bit Hive.

Here, we have a big difference between the two samples we have analyzed. Instead of creating a batch script, the 64-bit version we found uses several commands to delete not only the Windows Shadow Copies, but also to stop services, including Windows Defender.

Figure 24. Commands executed by the 64-bit Hive sample we analyzed.

The full list of commands executed by the 64-bit version can be found in our GitHub repository.

Next in the flow, we have two important functions:

Figure 30. “ScanFiles” and “EncryptFiles” functions of Hive.

App.ScanFiles() is responsible for fetching all the files that will be encrypted by the ransomware. Also, this function creates the ransom note in disk, which was already loaded in memory previously.

App.EncryptFiles() does exactly what the name describes. Within that function, the code is calling another two, respectively encryptFilesGroup() and EncryptFile(), loading the contents of the targeted file in memory, encrypting the data with what seems to be a custom algorithm created by Hive developers. Then, the encrypted file is written into disk, using the extension “.hive”.

Figure 26. Files encrypted by Hive ransomware.

Following the file encryption, we have another two functions executed by App.Run().

Figure 27. “EraseKey” and “Notify” functions.

The function App.EraseKey() accesses the memory location where the 10 MB primary key was stored by Hive and replaces all its bytes with random data.

Figure 28. Before and after the “EraseKey” function

App.Notify() creates the ransom note in disk, which is redundant since this file is also created by the function App.ScanFiles().

Last but not least, we have a curious function executed by the ransomware if the flag “-no-clean” wasn’t specified, named App.CleanSpace().

Figure 29. “CleanSpace” function.

Simply put, if executed, this code creates several files with 1GB+ each until the disk is full. Then, these newly created files are deleted.

Figure 30. Files created by the “CleanSpace” function.

Since Hive deletes files that have been encrypted, this process is likely performed to overwrite any bytes on disk that could potentially be restored to their original state, creating new files to replace deleted ones.

Figure 31. Disk space while the “CleanSpace” function is being executed.

Different from other ransomware families, Hive doesn’t change the user background, the only message available to the victim is the ransom note.

Figure 32. Hive ransom note.

According to the note, if the user deletes the file that has the “.key” extension, the data will be undecryptable, which leads us to the next part of this blog.

Decryptor

Hive provides decryptors for ESXi, Linux, and Windows (32 / 64-bit).

Figure 33. Hive ransomware decryptors for MHS.

Although we only found Windows versions of Hive in the wild, this is a strong indication that they have payloads for other systems, aligning with the fact that the whole code was built in Go language, which is multi-platform.

When it comes to the decryption process, the file first loads the encrypted key from disk, which is why the ransom note states that you can’t delete this file.

Figure 34. Hive decryption process

Once the key is loaded and decrypted, Hive scans all directories searching for encrypted files, and then proceeds with the decryption process.

Conclusion

Hive is yet another ransomware group that is likely operating in the RaaS model. However, the process used to encrypt the files is quite unusual. 

Usually, the encryption process implemented by ransomware in the wild is to generate a unique symmetric key for each file, that is eventually encrypted and stored along with the encrypted data, so it can be recovered later. Instead, Hive creates a unique key that is eventually encrypted and written into disk, making the decryption process irreversible if this file is deleted by accident. Furthermore, this ransomware contains functionalities that make the execution slow, such as “wiping” the disk until it’s full to avoid file restoration.

Regardless of these points, we consider Hive a dangerous threat, as it’s already causing damage to people and organizations, combined with the fact that the threat is multi-platform.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Gen:Variant.Ransom.Hive.2
    • Trojan.GenericKD.37237769
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

SHA256

hive_x861e21c8e27a97de1796ca47a9613477cf7aec335a783469c5ca3a09d4f07db0ff
hive_x64321d0c4f1bbb44c53cd02186107a18b7a44c840a9a5f0a78bdac06868136b72c

A full list of IOCs is available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Stay informed!

Suscríbase para recibir lo último del blog de Netskope