Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

fechar
fechar
  • Por que Netskope divisa

    Mudando a forma como a rede e a segurança trabalham juntas.

  • Nossos clientes divisa

    A Netskope atende a mais de 3.400 clientes em todo o mundo, incluindo mais de 30 das empresas da Fortune 100

  • Nossos parceiros divisa

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

Líder em SSE. Agora é líder em SASE de fornecedor único.

Descubra por que a Netskope estreou como líder no Quadrante Mágico™ do Gartner® para Single-Vendor SASE

Obtenha o Relatório
Do Ponto de Vista do Cliente

Leia como os clientes inovadores estão navegando com sucesso no cenário atual de mudanças na rede & segurança por meio da plataforma Netskope One.

Baixe o eBook
Do Ponto de Vista do Cliente
A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Saiba mais sobre os parceiros da Netskope
Grupo de diversos jovens profissionais sorrindo
Sua Rede do Amanhã

Planeje seu caminho rumo a uma rede mais rápida, segura e resiliente projetada para os aplicativos e usuários aos quais você oferece suporte.

Receba o whitepaper
Sua Rede do Amanhã
Netskope Cloud Exchange

O Cloud Exchange (CE) da Netskope oferece aos clientes ferramentas de integração poderosas para tirar proveito dos investimentos em estratégias de segurança.

Saiba mais sobre o Cloud Exchange
Vista aérea de uma cidade
  • Security Service Edge divisa

    Proteger-se contra ameaças avançadas e com nuvens e salvaguardar os dados em todos os vetores.

  • SD-WAN divisa

    Confidentemente, proporcionar acesso seguro e de alto desempenho a cada usuário remoto, dispositivo, site, e nuvem.

  • Secure Access Service Edge divisa

    O Netskope One SASE oferece uma solução SASE nativa da nuvem, totalmente convergente e de fornecedor único.

A plataforma do futuro é a Netskope

O Security Service Edge (SSE), o Cloud Access Security Broker (CASB), o Cloud Firewall, o Next Generation Secure Web Gateway (SWG) e o Private Access for ZTNA foram integrados nativamente em uma única solução para ajudar todas as empresas em sua jornada para a arquitetura Secure Access Service Edge (SASE).

Vá para a plataforma
Vídeo da Netskope
Next Gen SASE Branch é híbrida — conectada, segura e automatizada

Netskope Next Gen SASE Branch converge o Context-Aware SASE Fabric, Zero-Trust Hybrid Security e SkopeAI-Powered Cloud Orchestrator em uma oferta de nuvem unificada, inaugurando uma experiência de filial totalmente modernizada para empresas sem fronteiras.

Saiba mais sobre Next Gen SASE Branch
Pessoas no escritório de espaço aberto
SASE Architecture For Dummies (Arquitetura SASE para leigos)

Obtenha sua cópia gratuita do único guia de planejamento SASE que você realmente precisará.

Baixe o eBook
Livro eletrônico SASE Architecture For Dummies (Arquitetura SASE para leigos)
Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Conheça a NewEdge
Rodovia iluminada através de ziguezagues na encosta da montanha
Permita com segurança o uso de aplicativos generativos de IA com controle de acesso a aplicativos, treinamento de usuários em tempo real e a melhor proteção de dados da categoria.

Saiba como protegemos o uso de IA generativa
Ative com segurança o ChatGPT e a IA generativa
Soluções de zero trust para a implementação de SSE e SASE

Conheça o Zero Trust
Passeio de barco em mar aberto
Netskope obtém alta autorização do FedRAMP

Escolha o Netskope GovCloud para acelerar a transformação de sua agência.

Saiba mais sobre o Netskope GovCloud
Netskope GovCloud
  • Recursos divisa

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog divisa

    Saiba como a Netskope permite a transformação da segurança e da rede por meio do serviço de acesso seguro de borda (SASE)

  • Eventos e workshops divisa

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined divisa

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Previsões para 2025
Neste episódio de Security Visionaries, temos a companhia de Kiersten Todt, presidente da Wondros e ex-chefe de gabinete da Agência de Segurança Cibernética e de Infraestrutura (CISA), para discutir as previsões para 2025 e além.

Reproduzir o podcast Navegue por todos os podcasts
Previsões para 2025
Últimos blogs

Leia como a Netskope pode viabilizar a jornada Zero Trust e SASE por meio de recursos de borda de serviço de acesso seguro (SASE).

Leia o Blog
Nascer do sol e céu nublado
SASE Week 2024 On-Demand

Aprenda a navegar pelos últimos avanços em SASE e confiança zero e explore como essas estruturas estão se adaptando para enfrentar os desafios de segurança cibernética e infraestrutura

Explorar sessões
SASE Week 2024
O que é SASE?

Saiba mais sobre a futura convergência de ferramentas de redes e segurança no modelo predominante e atual de negócios na nuvem.

Saiba mais sobre a SASE
  • Empresa divisa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Carreira divisa

    Junte-se aos mais de 3.000 membros incríveis da equipe da Netskope que estão criando a plataforma de segurança nativa da nuvem líder do setor.

  • Customer Solutions divisa

    Estamos aqui junto com você a cada passo da sua trajetória, assegurando seu sucesso com a Netskope.

  • Treinamento e credenciamentos divisa

    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem.

Apoiando a sustentabilidade por meio da segurança de dados

A Netskope tem o orgulho de participar da Visão 2045: uma iniciativa destinada a aumentar a conscientização sobre o papel da indústria privada na sustentabilidade.

Saiba mais
Apoiando a sustentabilidade por meio da segurança de dados
Ajude a moldar o futuro da segurança na nuvem

Na Netskope, os fundadores e líderes trabalham lado a lado com seus colegas, até mesmo os especialistas mais renomados deixam seus egos na porta, e as melhores ideias vencem.

Faça parte da equipe
Vagas na Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Ir para Soluções para Clientes
Netskope Professional Services
Proteja sua jornada de transformação digital e aproveite ao máximo seus aplicativos de nuvem, web e privados com o treinamento da Netskope.

Saiba mais sobre Treinamentos e Certificações
Grupo de jovens profissionais trabalhando

New Yokai Side-loaded Backdoor Targets Thai Officials

Dec 13 2024

Summary

DLL side-loading is a popular technique used by threat actors to execute malicious payloads under the umbrella of a benign, usually legitimate, executable. This allows the threat actor to exploit whitelists in security products that exclude trusted executables from detection. Among others, this technique has been leveraged by APT41 to deploy DUSTTRAP and Daggerfly to deliver Nightdoor backdoor.

During threat hunting activities, the Netskope team discovered a legitimate iTop Data Recovery application side-loading a backdoor we named Yokai that, to the best of our knowledge, has not been publicly documented yet. In this blog we will analyze the infection chain and dive deep into the internals of the Yokai backdoor.

Decoy documents

During our threat hunting activities, we discovered a RAR file that contained two LNK shortcut files named in Thai, named กระทรวงยุติธรรมสหรัฐอเมริกา.pdf and ด่วนที่สุด ทางการสหรัฐอเมริกาขอความร่วมมือระหว่างประเทศในเรื่องทางอาญา.docx. Translated, both documents are called “United States Department of Justice.pdf” and “Urgently, United States authorities ask for international cooperation in criminal matters.docx” respectively.

Clicking the shortcut files triggers the copying of content from an alternate data stream (ADS) named “file.exf” into decoy PDF and Word documents using esentutl.Esentutl is a Windows binary commonly abused to transfer malicious payload from alternate data streams.

After the copying is complete, the shortcut files open the decoy documents, giving the impression that their sole purpose is to display harmless content.

Dropper emerges from an alternate data stream

The shortcut file with a DOCX extension contains two data streams: the “file.exf” which is used to create a decoy document, and “file.ext” which contains the malicious payload.

The malicious payload is copied to an executable named “file.exe” using esentutl. If successful, the command prompt launches “file.exe” using start command.

Upon execution of file.exe, it drops three files on the folder path C:\ProgramData\police. IdrInit.exe is a legitimate iTop Data Recovery application abused to side-load the malicious DLL ProductStatistics3.dll. IdrInit.exe is executed by file.exe. The file IdrInit.exe.data contains information sent by the C2. The contents will be described later in this blog.

Yokai Backdoor

Upon execution, IdrInit.exe side-loads the Yokai backdoor (ProductStatistics3.dll) and calls the “SetStatParam3” function from it. This function is simply a wrapper around the malicious “pfc_init” function.

In another variant of this backdoor, we found a PDB string “E:\Project\YK0163\src\YK0163_v2.0.0\YK0163\Release\EACore.pdb”, which we used as an inspiration to name this backdoor, “Yokai”.

Scheduled task and duplicate executions

If IdrInit.exe is executed as a non-admin user, Yokai creates a scheduled task, even if it already exists, named “MicrosoftTSUpdate” which executes IdrInit.exe every five minutes.

cmd.exe /c schtasks /create /f /sc MINUTE /MO 5 /tn "MicrosoftTSUpdate" /tr <path_to_IdrInit.exe>

If IdrInit.exe is executed as an admin user, it spawns a copy of itself. Each spawned process, in turn, spawns its own copy, and so on. If the number of spawned processes continuously increases, it could negatively impact system performance and raise likelihood of detection. Additionally, this behavior would be clearly visible if the user inspected the processes running on their system, further reducing the stealth aspect of the malware.

Mutex creation

Yokai looks for the presence of a mutex named “Mutex_Local_Windows_1547”. If it exists, control returns to IdrInit.exe and it terminates itself; otherwise, the mutex is created. Malware often uses mutexes as a mechanism to avoid duplicate executions on a host it has already compromised. It would have been a better design choice to first check for the existence of the mutex before creating a scheduled task or spawning processes, as described earlier.

Check-in with the C2

Yokai collects the hostname and username of the logged-in user. A string “2.2.0” was also found hardcoded and the PDB string mentioned earlier had the substring “2.0.0” in it. We believe this string indicates the version of the malware.

The data is then formatted into the following 156-byte block:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Malware version

(16 bytes)
Username

(64 bytes)
Hostname

(64 bytes)

The first byte serves as a checksum calculated over the remaining data. (The API-INDEX value will be described later in this blog.) The sequence number represents a 0-indexed count of the backdoor’s communication interactions with the C2, incrementing by 1 with each new successful exchange.

The checksum is calculated via XOR operations, which, although unreliable, do provide basic error detection. This is calculated in the following manner:

def calculate_checksum(data):
for i in range(1, len(data)):
data[0] ^= data[i]
# The first byte of the data is the checksum
return data[0]

The data is then encrypted using a series of XOR operations with a hardcoded key, “ExtensionsWindow”. The algorithm is shown below:

def encrypt_data(plaintext, key):
encrypted1 = b""
for i in range(0, len(plaintext)):
encrypted1 += (plaintext[i] ^ key[i & 0xF]).to_bytes(1, "little")
encrypted2 = b""
for i in range(1, len(encrypted1)+1):
encrypted2 += (encrypted1[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
return encrypted2

The encrypted data is transmitted to the first available C2, which is one of the following in order:

  • 122.155.28[.]155:80/page/index.php
  • 154.90.47[.]77:80/

In another variant, we observed traffic going to port 443. The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEX0
Accept-Connect0
Content-Length156

The C2 response is encrypted in the same manner and with the same encryption key as before. It can be decrypted as follows:

def decrypt_data(encrypted, key):
decrypted1 = b""
for i in range(1, len(encrypted)+1):
decrypted1 += (encrypted[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
decrypted2 = b""
for i in range(0, len(decrypted1)):
decrypted2 += (decrypted1[i] ^ key[i & 0xF]).to_bytes(1, "little")
return decrypted2

The decrypted C2 response must satisfy checksum validation, be exactly 28 bytes in size, and have a value of 1 in the 4th byte. It has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
API-INDEX

(4 bytes)
New encryption key

(16 bytes)

The value of “API-INDEX” sent by the C2 is written to a file named “IdrInit.exe.data” in the same directory as IdrInit.exe. This value is used for the “API-INDEX” HTTP header in subsequent C2 communications. While we do not know the intention behind this header, it could be a mechanism to uniquely identify a compromised host as determined by the C2. The C2 also provides a new encryption key to be used for encrypting data before exfiltration.

C2 command codes

Yokai now enters a loop of processing commands sent by the C2 and data exfiltration. Its traffic to the C2 has the following structure:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Exfiltrated data

(Optional)

The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEXPreviously sent by the C2
Accept-Connect1

For example, in the snapshot below, the traffic on the left represents an empty payload being sent to the C2, indicating idle time, while the traffic on the right represents data exfiltration.

The C2 response has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
Shell commands to execute

(Optional)

The sequence number sent by the C2 must match the sequence number previously sent by Yokai. Otherwise, it checks if the sequence number sent by the C2 is one behind the sequence number previously sent by Yokai. If so, it retransmits; otherwise, it restarts the entire C2 communication process.

The table below summarizes the supported command codes:

Command codeFunction
1Represents the C2 ACK to the check-in traffic first sent by Yokai. A new encryption key and API-INDEX value is also sent by the C2.
3Spawns cmd[.]exe and attaches its STDIN and STDOUT to anonymous pipes.
4Execute shell commands by writing to pipes associated with the previously spawned cmd[.]exe.
2Do nothing
5Undetermined

Conclusions

In this blog, we walked through an infection chain that leveraged a RAR file that contained two LNK files. While one of them had a decoy PDF document embedded in its alternate data stream, the other embedded a decoy DOCX document and a malware dropper executable. It dropped a legitimate iTop Data Recovery application along with the side-loaded Yokai backdoor, offering console access to the threat actor.

DLL side-loading continues to be a popular technique leveraged by threat actors. Netskope will continue to track the evolution of the Yokai backdoor.

Recommendations

Netskope recommends that organizations review their security policies to ensure that they are adequately protected against malware:

  • Inspect all HTTP and HTTPS traffic, including all web and cloud traffic, to prevent systems from communicating with malicious domains and IP addresses. Netskope customers can configure their Netskope NG-SWG with a URL filtering policy to block known malicious domains, and a threat protection policy to inspect all web content to identify malicious content using a combination of signatures, threat intelligence, and machine learning.
  • Use Remote Browser Isolation (RBI) technology to provide additional protection when there is a need to visit websites that fall into categories that can present higher risk, like Newly Observed and Newly Registered Domains.

Netskope Detection

  • Netskope Threat Protection
    • RAR: Shortcut.Trojan.Pantera
    • LNK: Shortcut.Trojan.Pantera
    • Dropper:
      • Trojan.Generic.37082949
      • Gen.Detect.By.NSCloudSandbox.tr
    • Yokai Backdoor:
      • Win32.Trojan.Generic
      • Gen:Variant.Lazy.572161
      • Gen:Variant.Mikey.170188
      • Trojan.Generic.37080167
  • Netskope Intrusion Prevention System
    • Yokai Backdoor C2 traffic:
      • SID 170111: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected
      • SID 170112: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected

MITRE ATT&CK Techniques

TacticTechnique
TA0002: ExecutionT1053: Scheduled Task/Job

T1559: Inter-Process Communication
TA0005: Defense EvasionT1564.004: Hide Artifacts: NTFS File Attributes

T1036: Masquerading

T1574.002: Hijack Execution Flow: DLL Side-Loading

T1480.002: Execution Guardrails: Mutual Exclusion
TA0011: Command and ControlT1071.001: Application Layer Protocol: Web Protocols

T1573.001: Encrypted Channel: Symmetric Cryptography

IOCs

All the IOCs and scripts related to this malware can be found in our GitHub repository.

author image
Nikhil Hegde
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
author image
Jan Michael Alcantara
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.

Mantenha-se informado!

Subscribe for the latest from the Netskope Blog