Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

fechar
fechar
  • Por que Netskope divisa

    Mudando a forma como a rede e a segurança trabalham juntas.

  • Nossos clientes divisa

    A Netskope atende a mais de 3.400 clientes em todo o mundo, incluindo mais de 30 das empresas da Fortune 100

  • Nossos parceiros divisa

    Fazemos parceria com líderes de segurança para ajudá-lo a proteger sua jornada para a nuvem.

Líder em SSE. Agora é líder em SASE de fornecedor único.

Descubra por que a Netskope estreou como líder no Quadrante Mágico™ do Gartner® para Single-Vendor SASE

Obtenha o Relatório
Destaques de clientes visionários

Leia como os clientes inovadores estão navegando com sucesso no cenário atual de mudanças na rede & segurança por meio da plataforma Netskope One.

Baixe o eBook
Destaques de clientes visionários
A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.

Saiba mais sobre os parceiros da Netskope
Grupo de diversos jovens profissionais sorrindo
Sua Rede do Amanhã

Planeje seu caminho rumo a uma rede mais rápida, segura e resiliente projetada para os aplicativos e usuários aos quais você oferece suporte.

Receba o whitepaper
Sua Rede do Amanhã
Netskope Cloud Exchange

O Cloud Exchange (CE) da Netskope oferece aos clientes ferramentas de integração poderosas para tirar proveito dos investimentos em estratégias de segurança.

Saiba mais sobre o Cloud Exchange
Vista aérea de uma cidade
  • Security Service Edge divisa

    Proteger-se contra ameaças avançadas e com nuvens e salvaguardar os dados em todos os vetores.

  • SD-WAN divisa

    Confidentemente, proporcionar acesso seguro e de alto desempenho a cada usuário remoto, dispositivo, site, e nuvem.

  • Secure Access Service Edge divisa

    O Netskope One SASE oferece uma solução SASE nativa da nuvem, totalmente convergente e de fornecedor único.

A plataforma do futuro é a Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Vá para a plataforma
Vídeo da Netskope
Next Gen SASE Branch é híbrida — conectada, segura e automatizada

Netskope Next Gen SASE Branch converge o Context-Aware SASE Fabric, Zero-Trust Hybrid Security e SkopeAI-Powered Cloud Orchestrator em uma oferta de nuvem unificada, inaugurando uma experiência de filial totalmente modernizada para empresas sem fronteiras.

Saiba mais sobre Next Gen SASE Branch
Pessoas no escritório de espaço aberto
SASE Architecture For Dummies (Arquitetura SASE para leigos)

Obtenha sua cópia gratuita do único guia de planejamento SASE que você realmente precisará.

Baixe o eBook
Livro eletrônico SASE Architecture For Dummies (Arquitetura SASE para leigos)
Mude para serviços de segurança na nuvem líderes de mercado com latência mínima e alta confiabilidade.

Conheça a NewEdge
Rodovia iluminada através de ziguezagues na encosta da montanha
Permita com segurança o uso de aplicativos generativos de IA com controle de acesso a aplicativos, treinamento de usuários em tempo real e a melhor proteção de dados da categoria.

Saiba como protegemos o uso de IA generativa
Ative com segurança o ChatGPT e a IA generativa
Soluções de zero trust para a implementação de SSE e SASE

Conheça o Zero Trust
Passeio de barco em mar aberto
Netskope obtém alta autorização do FedRAMP

Escolha o Netskope GovCloud para acelerar a transformação de sua agência.

Saiba mais sobre o Netskope GovCloud
Netskope GovCloud
  • Recursos divisa

    Saiba mais sobre como a Netskope pode ajudá-lo a proteger sua jornada para a nuvem.

  • Blog divisa

    Saiba como a Netskope permite a transformação da segurança e da rede por meio do serviço de acesso seguro de borda (SASE)

  • Eventos e workshops divisa

    Esteja atualizado sobre as últimas tendências de segurança e conecte-se com seus pares.

  • Security Defined divisa

    Tudo o que você precisa saber em nossa enciclopédia de segurança cibernética.

Podcast Security Visionaries

Previsões para 2025
Neste episódio de Security Visionaries, temos a companhia de Kiersten Todt, presidente da Wondros e ex-chefe de gabinete da Agência de Segurança Cibernética e de Infraestrutura (CISA), para discutir as previsões para 2025 e além.

Reproduzir o podcast Navegue por todos os podcasts
Previsões para 2025
Últimos blogs

Leia como a Netskope pode viabilizar a jornada Zero Trust e SASE por meio de recursos de borda de serviço de acesso seguro (SASE).

Leia o Blog
Nascer do sol e céu nublado
SASE Week 2024 On-Demand

Aprenda a navegar pelos últimos avanços em SASE e confiança zero e explore como essas estruturas estão se adaptando para enfrentar os desafios de segurança cibernética e infraestrutura

Explorar sessões
SASE Week 2024
O que é SASE?

Saiba mais sobre a futura convergência de ferramentas de redes e segurança no modelo predominante e atual de negócios na nuvem.

Saiba mais sobre a SASE
  • Empresa divisa

    Ajudamos você a antecipar os desafios da nuvem, dos dados e da segurança da rede.

  • Carreira divisa

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Customer Solutions divisa

    Estamos aqui junto com você a cada passo da sua trajetória, assegurando seu sucesso com a Netskope.

  • Treinamento e credenciamentos divisa

    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem.

Apoiando a sustentabilidade por meio da segurança de dados

A Netskope tem o orgulho de participar da Visão 2045: uma iniciativa destinada a aumentar a conscientização sobre o papel da indústria privada na sustentabilidade.

Saiba mais
Apoiando a sustentabilidade por meio da segurança de dados
Ajude a moldar o futuro da segurança na nuvem

Na Netskope, os fundadores e líderes trabalham lado a lado com seus colegas, até mesmo os especialistas mais renomados deixam seus egos na porta, e as melhores ideias vencem.

Faça parte da equipe
Vagas na Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Ir para Soluções para Clientes
Netskope Professional Services
Proteja sua jornada de transformação digital e aproveite ao máximo seus aplicativos de nuvem, web e privados com o treinamento da Netskope.

Saiba mais sobre Treinamentos e Certificações
Grupo de jovens profissionais trabalhando

Netskope Threat Coverage: BlackMatter

Aug 23 2021

Summary

In July of 2021, a new ransomware named BlackMatter emerged and was being advertised in web forums where the group was searching for compromised networks from companies with revenues of $100 million or more per year. Although they are not advertising as a Ransomware-as-a-Service (RaaS), the fact they are looking for “partners” is an indication that they are operating in this model. Furthermore, the group is claiming to have combined features from larger groups, such as DarkSide and REvil (a.k.a. Sodinokibi).

Screenshot of BlackMatter advertisement in a web forum.
BlackMatter advertisement in a web forum. (Source: The Record)

According to an interview with an alleged representative from BlackMatter, they have incorporated the ideas of LockBit, REvil, and DarkSide, after studying their ransomware in detail. Also, the BlackMatter representative believes that other ransomware groups have disappeared from the scene due to attention from governments following high-profile attacks.  BlackMatter plans to avoid such attention by being careful not to infect any critical infrastructure. This is echoed on their website, which states they are not willing to attack hospitals, critical infrastructures, defense industry, and non-profit companies.

Screenshot of Main page of BlackMatter’s website, hosted on the deep web.
Main page of BlackMatter’s website, hosted on the deep web.

The oil and gas industry is also excluded from the target list, a reference to the Colonial Pipeline attack where DarkSide stopped the fuel delivery across the Southeastern of the United States, followed by the shut down of the ransomware operation due to the pressure from law enforcement. The BlackMatter spokesperson also said that the Colonial PIpeline attack was a key factor for the shutdown of REvil and DarkSide, and that’s why they are excluding this kind of sector from the target list.

BlackMatter already claims to have hit three victims, each listed on their deep web site, which follows the same standard from other groups, containing the name of the attacked company, a summary of what data they have stolen, and the deadline for the ransom before the data is published.

Screenshot showing one of the DarkSide targets, with leaked data on the website.
One of the DarkSide targets, with leaked data on the website.

One of the companies infected by BlackMatter is SolarBR, which is the second-largest manufacturer of Coca-Cola in Brazil, where the group claimed to have stolen 50 GB of confidential finance, logistics, development, and other data.

Screenshot showing that Solar Coca-Cola was infected by BlackMatter
Solar Coca-Cola infected by BlackMatter

According to the post, if the ransom isn’t paid, the group will publish the data and inform all of the “biggest mass-media in Brazil and US,” making “Coca Cola and her lovers” to be “madly angry”.

Screenshot of additional information from BlackMatter’s deep web site.
Information from BlackMatter’s deep web site.

There is no official information about the ransom amount BlackMatter is requesting from Solar Coca-Cola, but the deadline is set to August 23, 2021.

In this threat coverage report, we will analyze a Windows BlackMatter sample, version 1.2, describing some of the key features of the malware. 

Threat

Like other malware, BlackMatter implements many techniques to avoid detection and make reverse engineering more challenging. The first item we would like to cover is how BlackMatter dynamically resolves API calls to hide them from the PE import table.

This is done by a multi-step process. First, the malware creates a unique hash that will identify both the DLL and API name that needs to be executed. To make this a bit harder for static detections, the real hash value is encrypted with a simple XOR operation. In this case, the key is 0x22065FED.

Figure showing function that loads the import based on a hash.
Figure 1. Function that loads the import based on a hash.

In the example above, after the XOR operation, the value 0x27D05EB2 is passed as a parameter to the function responsible for searching and loading the API. The code first enumerates all the DLLs that are loaded within the process through a common but interesting technique. 

First, it loads the Process Environment Block (PEB) address, which is located in the Thread Environment Block (TEB). Then, it loads the doubly linked list that contains all the loaded modules for the process, located in the PEB_LDR_DATA structure.

Figure showing BlackMatter function searching loaded modules using the PEB.
Figure 2. BlackMatter function searching loaded modules using the PEB.

Once the loaded DLL is located, the function retrieves the DLL’s offset, finds the PE header address, and then calculates the offset of the PE export directory, so it can enumerate the APIs exported by the DLL.

If the export table is found, the ransomware then calculates the hash value for both DLL and API name, using the following function:

Figure showing the function used by BlackMatter to calculate the hash of the string.
Figure 3. Function used by BlackMatter to calculate the hash of the string.

To get the unique hash, the ransomware first calculates the hash only for the DLL name.

Figure showing hash generation for the DLL “kernel32.dll”
Figure 4. Hash generation for the DLL “kernel32.dll”

In the example above, the hash for the DLL “kernel32.dll” is 0xB1FC7F66, which is then used by this same function to calculate the hash of the API name.

Figure generating the final hash for DLL + API name
Figure 5. Generating the final hash for DLL + API name

Therefore, using the same function again, the malware has generated the hash 0x27D05EB2 for the DLL “kernel32.dll” and the API “LoadLibraryA”, which is exactly the same value the malware is seeking, as demonstrated in Figure 1.

If the hash generated by the function matches the hash the malware passed as a parameter, the offset for the API is stored in memory, so the function can be called.

Figure showing BlackMatter’s code before and after the APIs were dynamically resolved.
Figure 6. BlackMatter’s code before and after the APIs were dynamically resolved.

Several DLLs are loaded by BlackMatter dynamically after the executable is running, as we can see below.

Figure showing DLLs dynamically loaded by BlackMatter.
Figure 7. DLLs dynamically loaded by BlackMatter.

To make the analysis faster, we’ve created a script that implements the same logic used by BlackMatter for the hash generation. Therefore, the script can be used to locate calls to specific APIs across BlackMatter’s code.

Figure showing script to generate the hash based on the API call.
Figure 8. Script to generate the hash based on the API call.

Another technique used by BlackMatter to stay under the radar is to encrypt all its important strings. In the samples we’ve analyzed, the ransomware used the same key as the one used to generate the hashes for the API loading process.

Figure showing BlackMatter’s routine for string decryption.
Figure 9. BlackMatter’s routine for string decryption.

After the bytes are organized in memory, the code decrypts the data in 4-byte blocks, using a simple XOR operation with the key 0x22065FED.

Figure showing example of a string decrypted by BlackMatter.
Figure 10. Example of a string decrypted by BlackMatter.

We can find useful information across the decrypted strings, such as registry keys, file names, and others. The full list of decrypted strings can be found in our GitHub repository.

Figure showing some of BlackMatter’s decrypted strings.
Figure 11. Some of BlackMatter’s decrypted strings.

BlackMatter also has an encrypted configuration inside the binary, located in a fake PE resource section.

Figure showing BlackMatter’s encrypted configuration.
Figure 12. BlackMatter’s encrypted configuration.

The first 4 bytes in the section are the initial decryption key, the following 4 bytes represent the size of the data, and the rest of the bytes are the encrypted configuration. The data is then decrypted using a rolling XOR algorithm.

A new decryption key is generated every 4 bytes, using a dynamic seed and a constant, which is 0x8088405 in all the samples we have analyzed so far.

Figure showing the stub that generates the decryption key.
Figure 13. Stub that generates the decryption key.

The decrypted configuration is compressed using aPLib, so we need to decompress the bytes to get the information. Once this process is done, we can read the contents of the configuration. At the beginning, we can find the attacker’s RSA public key, the AES key used to encrypt C2 communication, as well as a 16-byte value named “bot_company”.

Figure showing BlackMatter’s decrypted configuration.
Figure 14. BlackMatter’s decrypted configuration.

Aside from that, the configuration also includes several base64 encoded strings that contain sensitive strings used by the malware, like the C2 server addresses.

Figure decoding BlackMatter’s C2 server addresses.
Figure 15. Decoding BlackMatter’s C2 server addresses.

Among the strings, there is also a list of processes and services that the ransomware attempts to stop \ terminate.

Figure showing ransomware trying to open the VSS service.
Figure 16. Ransomware trying to open the VSS service.

To speed up the analysis, we have created a script that is able to decrypt the strings and the configuration from BlackMatter samples.

Figure decrypting BlackMatter’s strings.
Figure 17. Decrypting BlackMatter’s strings.

The script also decodes all base64 values from the configuration automatically:

Figure showing BlackMatter’s C2 server addresses.
Figure 18. BlackMatter’s C2 server addresses.

BlackMatter communicates with the C2 server in order to send information to the attackers. It first loads a JSON structure in memory, containing all the information that will be sent.

Figure showing information that will be sent to the C2 address.
Figure 19. Information that will be sent to the C2 address.

Prior to the POST request, the information is encrypted using AES-128 ECB, with the key extracted from the configuration, and then encoded with base64.

Figure showing BlackMatter sending request to the C2 server.
Figure 20. BlackMatter sending request to the C2 server.

It’s possible to decrypt this information by decoding the base64 and decrypting the data using the key from the configuration file.

Figure decrypting BlackMatter’s C2 request.
Figure 21. Decrypting BlackMatter’s C2 request.

BlackMatter sends two requests, the first one contains details about the infected environment, and the second one contains details about the encryption process, such as how many files failed to encrypt, the start and end time, etc.

Finally, once the encryption process is complete, the ransom note is created in the same places where there are encrypted files.

Figure showing BlackMatter’s ransom note.
Figure 22. BlackMatter’s ransom note.

BlackMatter changes the background image, a common practice among ransomware creators.

Figure showing BlackMatter’s custom background
Figure 23. BlackMatter’s custom background

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Trojan.GenericKD.46740173
    • Gen:Heur.Mint.Zard.25
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

SHA256

22d7d67c3af10b1a37f277ebabe2d1eb4fd25afbd6437d4377400e148bcc08d6

2c323453e959257c7aa86dc180bb3aaaa5c5ec06fa4e72b632d9e4b817052009

7f6dd0ca03f04b64024e86a72a6d7cfab6abccc2173b85896fc4b431990a5984

c6e2ef30a86baa670590bd21acf5b91822117e0cbe6060060bc5fe0182dace99

A full list of IOCs, a Yara rule, and the scripts used in the analysis are all available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Mantenha-se informado!

Subscribe for the latest from the Netskope Blog