Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

fermer
fermer
  • Pourquoi Netskope signe chevron

    Changer la façon dont le réseau et la sécurité fonctionnent ensemble.

  • Nos clients signe chevron

    Netskope sert plus de 3 400 clients dans le monde, dont plus de 30 entreprises du Fortune 100

  • Nos partenaires signe chevron

    Nous collaborons avec des leaders de la sécurité pour vous aider à sécuriser votre transition vers le cloud.

Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.

Découvrez pourquoi Netskope a été classé parmi les leaders de l'édition 2024 du Gartner® Magic Quadrant™️ pour le Secure Access Service Edge à fournisseur unique.

Recevoir le rapport
Coup de projecteur sur les idées novatrices de nos clients

Découvrez comment des clients innovants naviguent avec succès dans le paysage évolutif de la mise en réseau et de la sécurité d’aujourd’hui grâce à la plateforme Netskope One.

Obtenir l'EBook
Coup de projecteur sur les idées novatrices de nos clients
La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.

En savoir plus sur les partenaires de Netskope
Groupe de jeunes professionnels diversifiés souriant
Votre réseau de demain

Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.

Obtenir le livre blanc
Votre réseau de demain
Netskope Cloud Exchange

Le Netskope Cloud Exchange (CE) fournit aux clients des outils d'intégration puissants pour optimiser les investissements dans l'ensemble de leur infrastructure de sécurité.

En savoir plus sur Cloud Exchange
Aerial view of a city
  • Security Service Edge signe chevron

    Protégez-vous contre les menaces avancées et compatibles avec le cloud et protégez les données sur tous les vecteurs.

  • SD-WAN signe chevron

    Fournissez en toute confiance un accès sécurisé et performant à chaque utilisateur, appareil, site et cloud distant.

  • Secure Access Service Edge signe chevron

    Netskope One SASE fournit une solution SASE cloud-native, entièrement convergée et à fournisseur unique.

La plateforme du futur est Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), et Private Access for ZTNA intégrés nativement dans une solution unique pour aider chaque entreprise dans son cheminement vers l'architecture Secure Access Service Edge (SASE).

Présentation des produits
Vidéo Netskope
Next Gen SASE Branch est hybride - connectée, sécurisée et automatisée

Netskope Next Gen SASE Branch fait converger Context-Aware SASE Fabric, Zero-Trust Hybrid Security et SkopeAI-Powered Cloud Orchestrator dans une offre cloud unifiée, ouvrant la voie à une expérience de succursale entièrement modernisée pour l'entreprise sans frontières.

En savoir plus Next Gen SASE Branch
Personnes au bureau de l'espace ouvert
L'architecture SASE pour les nuls

Obtenez votre exemplaire gratuit du seul guide consacré à la conception d'une architecture SASE dont vous aurez jamais besoin.

Obtenir l'EBook
SASE Architecture For Dummies eBook
Optez pour les meilleurs services de sécurité cloud du marché, avec un temps de latence minimum et une fiabilité élevée.

Découvrez NewEdge
Autoroute éclairée traversant des lacets à flanc de montagne
Permettez en toute sécurité l'utilisation d'applications d'IA générative grâce au contrôle d'accès aux applications, à l'accompagnement des utilisateurs en temps réel et à une protection des données de premier ordre.

Découvrez comment nous sécurisons l'utilisation de l'IA générative
Autorisez ChatGPT et l’IA générative en toute sécurité
Solutions Zero Trust pour les déploiements du SSE et du SASE

En savoir plus sur la confiance zéro
Bateau roulant en pleine mer
Netskope obtient l'autorisation FedRAMP High Authorization

Choisissez Netskope GovCloud pour accélérer la transformation de votre agence.

En savoir plus sur Netskope GovCloud
Netskope GovCloud
  • Ressources signe chevron

    Découvrez comment Netskope peut vous aider à sécuriser votre migration vers le Cloud.

  • Blog signe chevron

    Découvrez comment Netskope permet la transformation de la sécurité et de la mise en réseau grâce à l'accès sécurisé à la périphérie des services (SASE).

  • Événements et ateliers signe chevron

    Restez à l'affût des dernières tendances en matière de sécurité et créez des liens avec vos pairs.

  • Définition de la sécurité signe chevron

    Tout ce que vous devez savoir dans notre encyclopédie de la cybersécurité.

Podcast Security Visionaries

Prévisions pour 2025
Dans cet épisode de Security Visionaries, Kiersten Todt, présidente de Wondros et ancienne directrice de cabinet de l'Agence pour la cybersécurité et la sécurité des infrastructures (CISA), nous parle des prévisions pour 2025 et au-delà.

Écouter le podcast Parcourir tous les podcasts
Prévisions pour 2025
Derniers blogs

Découvrez comment Netskope peut faciliter le parcours Zero Trust et SASE grâce à des capacités d'accès sécurisé à la périphérie des services (SASE).

Lire le blog
Lever de soleil et ciel nuageux
SASE Week 2024 A la demande

Apprenez à naviguer dans les dernières avancées en matière de SASE et de confiance zéro et découvrez comment ces cadres s'adaptent pour répondre aux défis de la cybersécurité et de l'infrastructure.

Explorer les sessions
SASE Week 2024
Qu'est-ce que SASE ?

Découvrez la future convergence des outils réseau et sécurité dans le modèle économique actuel, dominé par le cloud.

En savoir plus sur SASE
  • Entreprise signe chevron

    Nous vous aidons à conserver une longueur d'avance sur les défis posés par le cloud, les données et les réseaux en matière de sécurité.

  • Carrières signe chevron

    Rejoignez les 3 000 membres de l'équipe de Netskope qui construisent la première plateforme de sécurité cloud-native du secteur.

  • Solutions pour les clients signe chevron

    Nous sommes là pour vous et avec vous à chaque étape, pour assurer votre succès avec Netskope.

  • Formation et accréditations signe chevron

    Avec Netskope, devenez un expert de la sécurité du cloud.

Soutenir le développement durable par la sécurité des données

Netskope est fière de participer à Vision 2045 : une initiative visant à sensibiliser au rôle de l'industrie privée dans le développement durable.

En savoir plus
Soutenir le développement durable grâce à la sécurité des données
Contribuez à façonner l'avenir de la sécurité du cloud

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Rejoignez l’équipe
Carrières chez Netskope
Les professionnels du service et de l'assistance de Netskope veilleront à ce que vous puissiez déployer avec succès notre plateforme et en tirer toute la valeur.

Aller à Solutions clients
Services professionnels Netskope
Sécurisez votre parcours de transformation numérique et tirez le meilleur parti de vos applications cloud, Web et privées grâce à la formation Netskope.

En savoir plus sur les formations et les certifications
Groupe de jeunes professionnels travaillant

New Yokai Side-loaded Backdoor Targets Thai Officials

Dec 13 2024

Summary

DLL side-loading is a popular technique used by threat actors to execute malicious payloads under the umbrella of a benign, usually legitimate, executable. This allows the threat actor to exploit whitelists in security products that exclude trusted executables from detection. Among others, this technique has been leveraged by APT41 to deploy DUSTTRAP and Daggerfly to deliver Nightdoor backdoor.

During threat hunting activities, the Netskope team discovered a legitimate iTop Data Recovery application side-loading a backdoor we named Yokai that, to the best of our knowledge, has not been publicly documented yet. In this blog we will analyze the infection chain and dive deep into the internals of the Yokai backdoor.

Decoy documents

During our threat hunting activities, we discovered a RAR file that contained two LNK shortcut files named in Thai, named กระทรวงยุติธรรมสหรัฐอเมริกา.pdf and ด่วนที่สุด ทางการสหรัฐอเมริกาขอความร่วมมือระหว่างประเทศในเรื่องทางอาญา.docx. Translated, both documents are called “United States Department of Justice.pdf” and “Urgently, United States authorities ask for international cooperation in criminal matters.docx” respectively.

Clicking the shortcut files triggers the copying of content from an alternate data stream (ADS) named “file.exf” into decoy PDF and Word documents using esentutl.Esentutl is a Windows binary commonly abused to transfer malicious payload from alternate data streams.

After the copying is complete, the shortcut files open the decoy documents, giving the impression that their sole purpose is to display harmless content.

Dropper emerges from an alternate data stream

The shortcut file with a DOCX extension contains two data streams: the “file.exf” which is used to create a decoy document, and “file.ext” which contains the malicious payload.

The malicious payload is copied to an executable named “file.exe” using esentutl. If successful, the command prompt launches “file.exe” using start command.

Upon execution of file.exe, it drops three files on the folder path C:\ProgramData\police. IdrInit.exe is a legitimate iTop Data Recovery application abused to side-load the malicious DLL ProductStatistics3.dll. IdrInit.exe is executed by file.exe. The file IdrInit.exe.data contains information sent by the C2. The contents will be described later in this blog.

Yokai Backdoor

Upon execution, IdrInit.exe side-loads the Yokai backdoor (ProductStatistics3.dll) and calls the “SetStatParam3” function from it. This function is simply a wrapper around the malicious “pfc_init” function.

In another variant of this backdoor, we found a PDB string “E:\Project\YK0163\src\YK0163_v2.0.0\YK0163\Release\EACore.pdb”, which we used as an inspiration to name this backdoor, “Yokai”.

Scheduled task and duplicate executions

If IdrInit.exe is executed as a non-admin user, Yokai creates a scheduled task, even if it already exists, named “MicrosoftTSUpdate” which executes IdrInit.exe every five minutes.

cmd.exe /c schtasks /create /f /sc MINUTE /MO 5 /tn "MicrosoftTSUpdate" /tr <path_to_IdrInit.exe>

If IdrInit.exe is executed as an admin user, it spawns a copy of itself. Each spawned process, in turn, spawns its own copy, and so on. If the number of spawned processes continuously increases, it could negatively impact system performance and raise likelihood of detection. Additionally, this behavior would be clearly visible if the user inspected the processes running on their system, further reducing the stealth aspect of the malware.

Mutex creation

Yokai looks for the presence of a mutex named “Mutex_Local_Windows_1547”. If it exists, control returns to IdrInit.exe and it terminates itself; otherwise, the mutex is created. Malware often uses mutexes as a mechanism to avoid duplicate executions on a host it has already compromised. It would have been a better design choice to first check for the existence of the mutex before creating a scheduled task or spawning processes, as described earlier.

Check-in with the C2

Yokai collects the hostname and username of the logged-in user. A string “2.2.0” was also found hardcoded and the PDB string mentioned earlier had the substring “2.0.0” in it. We believe this string indicates the version of the malware.

The data is then formatted into the following 156-byte block:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Malware version

(16 bytes)
Username

(64 bytes)
Hostname

(64 bytes)

The first byte serves as a checksum calculated over the remaining data. (The API-INDEX value will be described later in this blog.) The sequence number represents a 0-indexed count of the backdoor’s communication interactions with the C2, incrementing by 1 with each new successful exchange.

The checksum is calculated via XOR operations, which, although unreliable, do provide basic error detection. This is calculated in the following manner:

def calculate_checksum(data):
for i in range(1, len(data)):
data[0] ^= data[i]
# The first byte of the data is the checksum
return data[0]

The data is then encrypted using a series of XOR operations with a hardcoded key, “ExtensionsWindow”. The algorithm is shown below:

def encrypt_data(plaintext, key):
encrypted1 = b""
for i in range(0, len(plaintext)):
encrypted1 += (plaintext[i] ^ key[i & 0xF]).to_bytes(1, "little")
encrypted2 = b""
for i in range(1, len(encrypted1)+1):
encrypted2 += (encrypted1[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
return encrypted2

The encrypted data is transmitted to the first available C2, which is one of the following in order:

  • 122.155.28[.]155:80/page/index.php
  • 154.90.47[.]77:80/

In another variant, we observed traffic going to port 443. The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEX0
Accept-Connect0
Content-Length156

The C2 response is encrypted in the same manner and with the same encryption key as before. It can be decrypted as follows:

def decrypt_data(encrypted, key):
decrypted1 = b""
for i in range(1, len(encrypted)+1):
decrypted1 += (encrypted[i-1] ^ key[i & 0xF]).to_bytes(1, "little")
decrypted2 = b""
for i in range(0, len(decrypted1)):
decrypted2 += (decrypted1[i] ^ key[i & 0xF]).to_bytes(1, "little")
return decrypted2

The decrypted C2 response must satisfy checksum validation, be exactly 28 bytes in size, and have a value of 1 in the 4th byte. It has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
API-INDEX

(4 bytes)
New encryption key

(16 bytes)

The value of “API-INDEX” sent by the C2 is written to a file named “IdrInit.exe.data” in the same directory as IdrInit.exe. This value is used for the “API-INDEX” HTTP header in subsequent C2 communications. While we do not know the intention behind this header, it could be a mechanism to uniquely identify a compromised host as determined by the C2. The C2 also provides a new encryption key to be used for encrypting data before exfiltration.

C2 command codes

Yokai now enters a loop of processing commands sent by the C2 and data exfiltration. Its traffic to the C2 has the following structure:

HeaderPayload
Checksum

(1 byte)
API-INDEX

(4 bytes)
Sequence number

(2 bytes)
Undetermined

(1 byte)
Payload size

(4 bytes)
Exfiltrated data

(Optional)

The following table shows the fixed values for specific HTTP headers:

Header nameValue
Content-Typeapplication/x-www-form-urlencoded
User-AgentWinHTTP Example/1.0
API-INDEXPreviously sent by the C2
Accept-Connect1

For example, in the snapshot below, the traffic on the left represents an empty payload being sent to the C2, indicating idle time, while the traffic on the right represents data exfiltration.

The C2 response has the following structure:

HeaderPayload
Checksum

(1 byte)
Sequence number

(2 bytes)
Command code

(1 byte)
Payload size

(4 bytes)
Shell commands to execute

(Optional)

The sequence number sent by the C2 must match the sequence number previously sent by Yokai. Otherwise, it checks if the sequence number sent by the C2 is one behind the sequence number previously sent by Yokai. If so, it retransmits; otherwise, it restarts the entire C2 communication process.

The table below summarizes the supported command codes:

Command codeFunction
1Represents the C2 ACK to the check-in traffic first sent by Yokai. A new encryption key and API-INDEX value is also sent by the C2.
3Spawns cmd[.]exe and attaches its STDIN and STDOUT to anonymous pipes.
4Execute shell commands by writing to pipes associated with the previously spawned cmd[.]exe.
2Do nothing
5Undetermined

Conclusions

In this blog, we walked through an infection chain that leveraged a RAR file that contained two LNK files. While one of them had a decoy PDF document embedded in its alternate data stream, the other embedded a decoy DOCX document and a malware dropper executable. It dropped a legitimate iTop Data Recovery application along with the side-loaded Yokai backdoor, offering console access to the threat actor.

DLL side-loading continues to be a popular technique leveraged by threat actors. Netskope will continue to track the evolution of the Yokai backdoor.

Recommendations

Netskope recommends that organizations review their security policies to ensure that they are adequately protected against malware:

  • Inspect all HTTP and HTTPS traffic, including all web and cloud traffic, to prevent systems from communicating with malicious domains and IP addresses. Netskope customers can configure their Netskope NG-SWG with a URL filtering policy to block known malicious domains, and a threat protection policy to inspect all web content to identify malicious content using a combination of signatures, threat intelligence, and machine learning.
  • Use Remote Browser Isolation (RBI) technology to provide additional protection when there is a need to visit websites that fall into categories that can present higher risk, like Newly Observed and Newly Registered Domains.

Netskope Detection

  • Netskope Threat Protection
    • RAR: Shortcut.Trojan.Pantera
    • LNK: Shortcut.Trojan.Pantera
    • Dropper:
      • Trojan.Generic.37082949
      • Gen.Detect.By.NSCloudSandbox.tr
    • Yokai Backdoor:
      • Win32.Trojan.Generic
      • Gen:Variant.Lazy.572161
      • Gen:Variant.Mikey.170188
      • Trojan.Generic.37080167
  • Netskope Intrusion Prevention System
    • Yokai Backdoor C2 traffic:
      • SID 170111: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected
      • SID 170112: MALWARE-CNC Win.Backdoor.Yokai variant C2 outbound traffic detected

MITRE ATT&CK Techniques

TacticTechnique
TA0002: ExecutionT1053: Scheduled Task/Job

T1559: Inter-Process Communication
TA0005: Defense EvasionT1564.004: Hide Artifacts: NTFS File Attributes

T1036: Masquerading

T1574.002: Hijack Execution Flow: DLL Side-Loading

T1480.002: Execution Guardrails: Mutual Exclusion
TA0011: Command and ControlT1071.001: Application Layer Protocol: Web Protocols

T1573.001: Encrypted Channel: Symmetric Cryptography

IOCs

All the IOCs and scripts related to this malware can be found in our GitHub repository.

author image
Nikhil Hegde
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
Nikhil Hegde is a Senior Engineer for Netskope's Security Efficacy team. He is a graduate from the University of Maryland's Clark School of Engineering with a Master's degree in Cybersecurity.
author image
Jan Michael Alcantara
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.
Jan Michael Alcantara is an experienced incident responder with a background on forensics, threat hunting, and incident analysis.

Restez informé !

Abonnez-vous pour recevoir les dernières nouvelles du blog de Netskope