Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

fermer
fermer
  • Pourquoi Netskope signe chevron

    Changer la façon dont le réseau et la sécurité fonctionnent ensemble.

  • Nos clients signe chevron

    Netskope sert plus de 3 400 clients dans le monde, dont plus de 30 entreprises du Fortune 100

  • Nos partenaires signe chevron

    Nous collaborons avec des leaders de la sécurité pour vous aider à sécuriser votre transition vers le cloud.

Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.

Découvrez pourquoi Netskope a été classé parmi les leaders de l'édition 2024 du Gartner® Magic Quadrant™️ pour le Secure Access Service Edge à fournisseur unique.

Recevoir le rapport
Coup de projecteur sur les idées novatrices de nos clients

Découvrez comment des clients innovants naviguent avec succès dans le paysage évolutif de la mise en réseau et de la sécurité d’aujourd’hui grâce à la plateforme Netskope One.

Obtenir l'EBook
Coup de projecteur sur les idées novatrices de nos clients
La stratégie de commercialisation de Netskope privilégie ses partenaires, ce qui leur permet de maximiser leur croissance et leur rentabilité, tout en transformant la sécurité des entreprises.

En savoir plus sur les partenaires de Netskope
Groupe de jeunes professionnels diversifiés souriant
Votre réseau de demain

Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.

Obtenir le livre blanc
Votre réseau de demain
Netskope Cloud Exchange

Le Netskope Cloud Exchange (CE) fournit aux clients des outils d'intégration puissants pour optimiser les investissements dans l'ensemble de leur infrastructure de sécurité.

En savoir plus sur Cloud Exchange
Aerial view of a city
  • Security Service Edge signe chevron

    Protégez-vous contre les menaces avancées et compatibles avec le cloud et protégez les données sur tous les vecteurs.

  • SD-WAN signe chevron

    Fournissez en toute confiance un accès sécurisé et performant à chaque utilisateur, appareil, site et cloud distant.

  • Secure Access Service Edge signe chevron

    Netskope One SASE fournit une solution SASE cloud-native, entièrement convergée et à fournisseur unique.

La plateforme du futur est Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), et Private Access for ZTNA intégrés nativement dans une solution unique pour aider chaque entreprise dans son cheminement vers l'architecture Secure Access Service Edge (SASE).

Présentation des produits
Vidéo Netskope
Next Gen SASE Branch est hybride - connectée, sécurisée et automatisée

Netskope Next Gen SASE Branch fait converger Context-Aware SASE Fabric, Zero-Trust Hybrid Security et SkopeAI-Powered Cloud Orchestrator dans une offre cloud unifiée, ouvrant la voie à une expérience de succursale entièrement modernisée pour l'entreprise sans frontières.

En savoir plus Next Gen SASE Branch
Personnes au bureau de l'espace ouvert
L'architecture SASE pour les nuls

Obtenez votre exemplaire gratuit du seul guide consacré à la conception d'une architecture SASE dont vous aurez jamais besoin.

Obtenir l'EBook
SASE Architecture For Dummies eBook
Optez pour les meilleurs services de sécurité cloud du marché, avec un temps de latence minimum et une fiabilité élevée.

Découvrez NewEdge
Autoroute éclairée traversant des lacets à flanc de montagne
Permettez en toute sécurité l'utilisation d'applications d'IA générative grâce au contrôle d'accès aux applications, à l'accompagnement des utilisateurs en temps réel et à une protection des données de premier ordre.

Découvrez comment nous sécurisons l'utilisation de l'IA générative
Autorisez ChatGPT et l’IA générative en toute sécurité
Solutions Zero Trust pour les déploiements du SSE et du SASE

En savoir plus sur la confiance zéro
Bateau roulant en pleine mer
Netskope obtient l'autorisation FedRAMP High Authorization

Choisissez Netskope GovCloud pour accélérer la transformation de votre agence.

En savoir plus sur Netskope GovCloud
Netskope GovCloud
  • Ressources signe chevron

    Découvrez comment Netskope peut vous aider à sécuriser votre migration vers le Cloud.

  • Blog signe chevron

    Découvrez comment Netskope permet la transformation de la sécurité et de la mise en réseau grâce à l'accès sécurisé à la périphérie des services (SASE).

  • Événements et ateliers signe chevron

    Restez à l'affût des dernières tendances en matière de sécurité et créez des liens avec vos pairs.

  • Définition de la sécurité signe chevron

    Tout ce que vous devez savoir dans notre encyclopédie de la cybersécurité.

Podcast Security Visionaries

A Cyber & Physical Security Playbook
Emily Wearmouth et Ben Morris examinent les défis posés par la protection des manifestations sportives internationales, lorsque la cybersécurité rencontre la sécurité physique.

Écouter le podcast Parcourir tous les podcasts
Manuel de sécurité physique Cyber &, avec Ben Morris de World Rugby
Derniers blogs

Découvrez comment Netskope peut faciliter le parcours Zero Trust et SASE grâce à des capacités d'accès sécurisé à la périphérie des services (SASE).

Lire le blog
Lever de soleil et ciel nuageux
SASE Week 2024 A la demande

Apprenez à naviguer dans les dernières avancées en matière de SASE et de confiance zéro et découvrez comment ces cadres s'adaptent pour répondre aux défis de la cybersécurité et de l'infrastructure.

Explorer les sessions
SASE Week 2024
Qu'est-ce que SASE ?

Découvrez la future convergence des outils réseau et sécurité dans le modèle économique actuel, dominé par le cloud.

En savoir plus sur SASE
  • Entreprise signe chevron

    Nous vous aidons à conserver une longueur d'avance sur les défis posés par le cloud, les données et les réseaux en matière de sécurité.

  • Carrières signe chevron

    Rejoignez les 3 000 membres de l'équipe de Netskope qui construisent la première plateforme de sécurité cloud-native du secteur.

  • Solutions pour les clients signe chevron

    Nous sommes là pour vous et avec vous à chaque étape, pour assurer votre succès avec Netskope.

  • Formation et accréditations signe chevron

    Avec Netskope, devenez un expert de la sécurité du cloud.

Soutenir le développement durable par la sécurité des données

Netskope est fière de participer à Vision 2045 : une initiative visant à sensibiliser au rôle de l'industrie privée dans le développement durable.

En savoir plus
Soutenir le développement durable grâce à la sécurité des données
Contribuez à façonner l'avenir de la sécurité du cloud

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Rejoignez l’équipe
Carrières chez Netskope
Les professionnels du service et de l'assistance de Netskope veilleront à ce que vous puissiez déployer avec succès notre plateforme et en tirer toute la valeur.

Aller à Solutions clients
Services professionnels Netskope
Sécurisez votre parcours de transformation numérique et tirez le meilleur parti de vos applications cloud, Web et privées grâce à la formation Netskope.

En savoir plus sur les formations et les certifications
Groupe de jeunes professionnels travaillant

Netskope Threat Coverage: BlackMatter

Aug 23 2021

Summary

In July of 2021, a new ransomware named BlackMatter emerged and was being advertised in web forums where the group was searching for compromised networks from companies with revenues of $100 million or more per year. Although they are not advertising as a Ransomware-as-a-Service (RaaS), the fact they are looking for “partners” is an indication that they are operating in this model. Furthermore, the group is claiming to have combined features from larger groups, such as DarkSide and REvil (a.k.a. Sodinokibi).

Screenshot of BlackMatter advertisement in a web forum.
BlackMatter advertisement in a web forum. (Source: The Record)

According to an interview with an alleged representative from BlackMatter, they have incorporated the ideas of LockBit, REvil, and DarkSide, after studying their ransomware in detail. Also, the BlackMatter representative believes that other ransomware groups have disappeared from the scene due to attention from governments following high-profile attacks.  BlackMatter plans to avoid such attention by being careful not to infect any critical infrastructure. This is echoed on their website, which states they are not willing to attack hospitals, critical infrastructures, defense industry, and non-profit companies.

Screenshot of Main page of BlackMatter’s website, hosted on the deep web.
Main page of BlackMatter’s website, hosted on the deep web.

The oil and gas industry is also excluded from the target list, a reference to the Colonial Pipeline attack where DarkSide stopped the fuel delivery across the Southeastern of the United States, followed by the shut down of the ransomware operation due to the pressure from law enforcement. The BlackMatter spokesperson also said that the Colonial PIpeline attack was a key factor for the shutdown of REvil and DarkSide, and that’s why they are excluding this kind of sector from the target list.

BlackMatter already claims to have hit three victims, each listed on their deep web site, which follows the same standard from other groups, containing the name of the attacked company, a summary of what data they have stolen, and the deadline for the ransom before the data is published.

Screenshot showing one of the DarkSide targets, with leaked data on the website.
One of the DarkSide targets, with leaked data on the website.

One of the companies infected by BlackMatter is SolarBR, which is the second-largest manufacturer of Coca-Cola in Brazil, where the group claimed to have stolen 50 GB of confidential finance, logistics, development, and other data.

Screenshot showing that Solar Coca-Cola was infected by BlackMatter
Solar Coca-Cola infected by BlackMatter

According to the post, if the ransom isn’t paid, the group will publish the data and inform all of the “biggest mass-media in Brazil and US,” making “Coca Cola and her lovers” to be “madly angry”.

Screenshot of additional information from BlackMatter’s deep web site.
Information from BlackMatter’s deep web site.

There is no official information about the ransom amount BlackMatter is requesting from Solar Coca-Cola, but the deadline is set to August 23, 2021.

In this threat coverage report, we will analyze a Windows BlackMatter sample, version 1.2, describing some of the key features of the malware. 

Threat

Like other malware, BlackMatter implements many techniques to avoid detection and make reverse engineering more challenging. The first item we would like to cover is how BlackMatter dynamically resolves API calls to hide them from the PE import table.

This is done by a multi-step process. First, the malware creates a unique hash that will identify both the DLL and API name that needs to be executed. To make this a bit harder for static detections, the real hash value is encrypted with a simple XOR operation. In this case, the key is 0x22065FED.

Figure showing function that loads the import based on a hash.
Figure 1. Function that loads the import based on a hash.

In the example above, after the XOR operation, the value 0x27D05EB2 is passed as a parameter to the function responsible for searching and loading the API. The code first enumerates all the DLLs that are loaded within the process through a common but interesting technique. 

First, it loads the Process Environment Block (PEB) address, which is located in the Thread Environment Block (TEB). Then, it loads the doubly linked list that contains all the loaded modules for the process, located in the PEB_LDR_DATA structure.

Figure showing BlackMatter function searching loaded modules using the PEB.
Figure 2. BlackMatter function searching loaded modules using the PEB.

Once the loaded DLL is located, the function retrieves the DLL’s offset, finds the PE header address, and then calculates the offset of the PE export directory, so it can enumerate the APIs exported by the DLL.

If the export table is found, the ransomware then calculates the hash value for both DLL and API name, using the following function:

Figure showing the function used by BlackMatter to calculate the hash of the string.
Figure 3. Function used by BlackMatter to calculate the hash of the string.

To get the unique hash, the ransomware first calculates the hash only for the DLL name.

Figure showing hash generation for the DLL “kernel32.dll”
Figure 4. Hash generation for the DLL “kernel32.dll”

In the example above, the hash for the DLL “kernel32.dll” is 0xB1FC7F66, which is then used by this same function to calculate the hash of the API name.

Figure generating the final hash for DLL + API name
Figure 5. Generating the final hash for DLL + API name

Therefore, using the same function again, the malware has generated the hash 0x27D05EB2 for the DLL “kernel32.dll” and the API “LoadLibraryA”, which is exactly the same value the malware is seeking, as demonstrated in Figure 1.

If the hash generated by the function matches the hash the malware passed as a parameter, the offset for the API is stored in memory, so the function can be called.

Figure showing BlackMatter’s code before and after the APIs were dynamically resolved.
Figure 6. BlackMatter’s code before and after the APIs were dynamically resolved.

Several DLLs are loaded by BlackMatter dynamically after the executable is running, as we can see below.

Figure showing DLLs dynamically loaded by BlackMatter.
Figure 7. DLLs dynamically loaded by BlackMatter.

To make the analysis faster, we’ve created a script that implements the same logic used by BlackMatter for the hash generation. Therefore, the script can be used to locate calls to specific APIs across BlackMatter’s code.

Figure showing script to generate the hash based on the API call.
Figure 8. Script to generate the hash based on the API call.

Another technique used by BlackMatter to stay under the radar is to encrypt all its important strings. In the samples we’ve analyzed, the ransomware used the same key as the one used to generate the hashes for the API loading process.

Figure showing BlackMatter’s routine for string decryption.
Figure 9. BlackMatter’s routine for string decryption.

After the bytes are organized in memory, the code decrypts the data in 4-byte blocks, using a simple XOR operation with the key 0x22065FED.

Figure showing example of a string decrypted by BlackMatter.
Figure 10. Example of a string decrypted by BlackMatter.

We can find useful information across the decrypted strings, such as registry keys, file names, and others. The full list of decrypted strings can be found in our GitHub repository.

Figure showing some of BlackMatter’s decrypted strings.
Figure 11. Some of BlackMatter’s decrypted strings.

BlackMatter also has an encrypted configuration inside the binary, located in a fake PE resource section.

Figure showing BlackMatter’s encrypted configuration.
Figure 12. BlackMatter’s encrypted configuration.

The first 4 bytes in the section are the initial decryption key, the following 4 bytes represent the size of the data, and the rest of the bytes are the encrypted configuration. The data is then decrypted using a rolling XOR algorithm.

A new decryption key is generated every 4 bytes, using a dynamic seed and a constant, which is 0x8088405 in all the samples we have analyzed so far.

Figure showing the stub that generates the decryption key.
Figure 13. Stub that generates the decryption key.

The decrypted configuration is compressed using aPLib, so we need to decompress the bytes to get the information. Once this process is done, we can read the contents of the configuration. At the beginning, we can find the attacker’s RSA public key, the AES key used to encrypt C2 communication, as well as a 16-byte value named “bot_company”.

Figure showing BlackMatter’s decrypted configuration.
Figure 14. BlackMatter’s decrypted configuration.

Aside from that, the configuration also includes several base64 encoded strings that contain sensitive strings used by the malware, like the C2 server addresses.

Figure decoding BlackMatter’s C2 server addresses.
Figure 15. Decoding BlackMatter’s C2 server addresses.

Among the strings, there is also a list of processes and services that the ransomware attempts to stop \ terminate.

Figure showing ransomware trying to open the VSS service.
Figure 16. Ransomware trying to open the VSS service.

To speed up the analysis, we have created a script that is able to decrypt the strings and the configuration from BlackMatter samples.

Figure decrypting BlackMatter’s strings.
Figure 17. Decrypting BlackMatter’s strings.

The script also decodes all base64 values from the configuration automatically:

Figure showing BlackMatter’s C2 server addresses.
Figure 18. BlackMatter’s C2 server addresses.

BlackMatter communicates with the C2 server in order to send information to the attackers. It first loads a JSON structure in memory, containing all the information that will be sent.

Figure showing information that will be sent to the C2 address.
Figure 19. Information that will be sent to the C2 address.

Prior to the POST request, the information is encrypted using AES-128 ECB, with the key extracted from the configuration, and then encoded with base64.

Figure showing BlackMatter sending request to the C2 server.
Figure 20. BlackMatter sending request to the C2 server.

It’s possible to decrypt this information by decoding the base64 and decrypting the data using the key from the configuration file.

Figure decrypting BlackMatter’s C2 request.
Figure 21. Decrypting BlackMatter’s C2 request.

BlackMatter sends two requests, the first one contains details about the infected environment, and the second one contains details about the encryption process, such as how many files failed to encrypt, the start and end time, etc.

Finally, once the encryption process is complete, the ransom note is created in the same places where there are encrypted files.

Figure showing BlackMatter’s ransom note.
Figure 22. BlackMatter’s ransom note.

BlackMatter changes the background image, a common practice among ransomware creators.

Figure showing BlackMatter’s custom background
Figure 23. BlackMatter’s custom background

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Trojan.GenericKD.46740173
    • Gen:Heur.Mint.Zard.25
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

SHA256

22d7d67c3af10b1a37f277ebabe2d1eb4fd25afbd6437d4377400e148bcc08d6

2c323453e959257c7aa86dc180bb3aaaa5c5ec06fa4e72b632d9e4b817052009

7f6dd0ca03f04b64024e86a72a6d7cfab6abccc2173b85896fc4b431990a5984

c6e2ef30a86baa670590bd21acf5b91822117e0cbe6060060bc5fe0182dace99

A full list of IOCs, a Yara rule, and the scripts used in the analysis are all available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Restez informé !

Abonnez-vous pour recevoir les dernières nouvelles du blog de Netskope