Quantifizieren Sie den Wert von Netskope One SSE – Holen Sie sich die Forrester Total Economic Impact-Studie™ 2024

Schließen
Schließen
  • Warum Netskope? Chevron

    Verändern Sie die Art und Weise, wie Netzwerke und Sicherheit zusammenarbeiten.

  • Unsere Kunden Chevron

    Netskope betreut weltweit mehr als 3.400 Kunden, darunter mehr als 30 der Fortune 100

  • Unsere Partner Chevron

    Unsere Partnerschaften helfen Ihnen, Ihren Weg in die Cloud zu sichern.

Ein führendes Unternehmen im Bereich SSE. Jetzt ein führender Anbieter von SASE.

Erfahren Sie, warum Netskope im Gartner® Magic Quadrant™️ 2024 für Single-Vendor Secure Access Service Edge als Leader debütiert

Report abrufen
Customer Visionary Spotlights

Lesen Sie, wie innovative Kunden mithilfe der Netskope One-Plattform erfolgreich durch die sich verändernde Netzwerk- und Sicherheitslandschaft von heute navigieren.

Jetzt das E-Book lesen
Customer Visionary Spotlights
Die partnerorientierte Markteinführungsstrategie von Netskope ermöglicht es unseren Partnern, ihr Wachstum und ihre Rentabilität zu maximieren und gleichzeitig die Unternehmenssicherheit an neue Anforderungen anzupassen.

Erfahren Sie mehr über Netskope-Partner
Gruppe junger, lächelnder Berufstätiger mit unterschiedlicher Herkunft
Ihr Netzwerk von morgen

Planen Sie Ihren Weg zu einem schnelleren, sichereren und widerstandsfähigeren Netzwerk, das auf die von Ihnen unterstützten Anwendungen und Benutzer zugeschnitten ist.

Whitepaper lesen
Ihr Netzwerk von morgen
Netskope Cloud Exchange

Cloud Exchange (CE) von Netskope gibt Ihren Kunden leistungsstarke Integrationstools an die Hand, mit denen sie in jeden Aspekt ihres Sicherheitsstatus investieren können.

Erfahren Sie mehr über Cloud Exchange
Luftaufnahme einer Stadt
  • Security Service Edge Chevron

    Schützen Sie sich vor fortgeschrittenen und cloudfähigen Bedrohungen und schützen Sie Daten über alle Vektoren hinweg.

  • SD-WAN Chevron

    Stellen Sie selbstbewusst sicheren, leistungsstarken Zugriff auf jeden Remote-Benutzer, jedes Gerät, jeden Standort und jede Cloud bereit.

  • Secure Access Service Edge Chevron

    Netskope One SASE bietet eine Cloud-native, vollständig konvergente SASE-Lösung eines einzelnen Anbieters.

Die Plattform der Zukunft heißt Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG) und Private Access for ZTNA sind nativ in einer einzigen Lösung integriert, um jedes Unternehmen auf seinem Weg zur Secure Access Service Edge (SASE)-Architektur zu unterstützen.

Netskope Produktübersicht
Netskope-Video
Next Gen SASE Branch ist hybrid – verbunden, sicher und automatisiert

Netskope Next Gen SASE Branch vereint kontextsensitives SASE Fabric, Zero-Trust Hybrid Security und SkopeAI-Powered Cloud Orchestrator in einem einheitlichen Cloud-Angebot und führt so zu einem vollständig modernisierten Branch-Erlebnis für das grenzenlose Unternehmen.

Erfahren Sie mehr über Next Gen SASE Branch
Menschen im Großraumbüro
SASE-Architektur für Dummies

Holen Sie sich Ihr kostenloses Exemplar des einzigen Leitfadens zum SASE-Design, den Sie jemals benötigen werden.

Jetzt das E-Book lesen
SASE-Architektur für Dummies – E-Book
Steigen Sie auf marktführende Cloud-Security Service mit minimaler Latenz und hoher Zuverlässigkeit um.

Mehr über NewEdge erfahren
Beleuchtete Schnellstraße mit Serpentinen durch die Berge
Ermöglichen Sie die sichere Nutzung generativer KI-Anwendungen mit Anwendungszugriffskontrolle, Benutzercoaching in Echtzeit und erstklassigem Datenschutz.

Erfahren Sie, wie wir den Einsatz generativer KI sichern
ChatGPT und Generative AI sicher aktivieren
Zero-Trust-Lösungen für SSE- und SASE-Deployments

Erfahren Sie mehr über Zero Trust
Bootsfahrt auf dem offenen Meer
Netskope erhält die FedRAMP High Authorization

Wählen Sie Netskope GovCloud, um die Transformation Ihrer Agentur zu beschleunigen.

Erfahren Sie mehr über Netskope GovCloud
Netskope GovCloud
  • Ressourcen Chevron

    Erfahren Sie mehr darüber, wie Netskope Ihnen helfen kann, Ihre Reise in die Cloud zu sichern.

  • Blog Chevron

    Erfahren Sie, wie Netskope die Sicherheits- und Netzwerktransformation durch Secure Access Service Edge (SASE) ermöglicht

  • Events und Workshops Chevron

    Bleiben Sie den neuesten Sicherheitstrends immer einen Schritt voraus und tauschen Sie sich mit Gleichgesinnten aus

  • Security Defined Chevron

    Finden Sie alles was Sie wissen müssen in unserer Cybersicherheits-Enzyklopädie.

Security Visionaries Podcast

A Cyber & Physical Security Playbook
Emily Wearmouth und Ben Morris untersuchen die Herausforderungen beim Schutz internationaler Sportveranstaltungen, bei denen Cybersicherheit auf physische Sicherheit trifft.

Podcast abspielen Alle Podcasts durchsuchen
Ein Playbook für Cyber- und physische Sicherheit, mit Ben Morris von World Rugby
Neueste Blogs

Lesen Sie, wie Netskope die Zero-Trust- und SASE-Reise durch SASE-Funktionen (Secure Access Service Edge) ermöglichen kann.

Den Blog lesen
Sonnenaufgang und bewölkter Himmel
SASE Week 2024 auf Abruf

Erfahren Sie, wie Sie sich in den neuesten Fortschritten bei SASE und Zero Trust zurechtfinden können, und erfahren Sie, wie sich diese Frameworks an die Herausforderungen der Cybersicherheit und Infrastruktur anpassen

Entdecken Sie Sitzungen
SASE Week 2024
Was ist SASE?

Erfahren Sie mehr über die zukünftige Konsolidierung von Netzwerk- und Sicherheitstools im heutigen Cloud-dominanten Geschäftsmodell.

Erfahre mehr zu SASE
  • Unternehmen Chevron

    Wir helfen Ihnen, den Herausforderungen der Cloud-, Daten- und Netzwerksicherheit einen Schritt voraus zu sein.

  • Karriere Chevron

    Schließen Sie sich den 3.000+ großartigen Teammitgliedern von Netskope an, die die branchenführende Cloud-native Sicherheitsplattform aufbauen.

  • Kundenlösungen Chevron

    Wir sind für Sie da, stehen Ihnen bei jedem Schritt zur Seite und sorgen für Ihren Erfolg mit Netskope.

  • Schulungen und Akkreditierungen Chevron

    Netskope-Schulungen helfen Ihnen ein Experte für Cloud-Sicherheit zu werden.

Unterstützung der Nachhaltigkeit durch Datensicherheit

Netskope ist stolz darauf, an Vision 2045 teilzunehmen: einer Initiative, die darauf abzielt, das Bewusstsein für die Rolle der Privatwirtschaft bei der Nachhaltigkeit zu schärfen.

Finde mehr heraus
Unterstützung der Nachhaltigkeit durch Datensicherheit
Helfen Sie mit, die Zukunft der Cloudsicherheit zu gestalten

Bei Netskope arbeiten Gründer und Führungskräfte Schulter an Schulter mit ihren Kollegen, selbst die renommiertesten Experten kontrollieren ihr Ego an der Tür, und die besten Ideen gewinnen.

Tritt dem Team bei
Karriere bei Netskope
Die engagierten Service- und Support-Experten von Netskope sorgen dafür, dass Sie unsere Plattform erfolgreich einsetzen und den vollen Wert ihrer Plattform ausschöpfen können.

Gehen Sie zu Kundenlösungen
Netskope Professional Services
Mit Netskope-Schulungen können Sie Ihre digitale Transformation absichern und das Beste aus Ihrer Cloud, dem Web und Ihren privaten Anwendungen machen.

Erfahren Sie mehr über Schulungen und Zertifizierungen
Gruppe junger Berufstätiger bei der Arbeit

Understanding the Risks of Prompt Injection Attacks on ChatGPT and Other Language Models

Jun 05 2023

Summary

Large language models (LLMs), such as ChatGPT, have gained significant popularity for their ability to generate human-like conversations and assist users with various tasks. However, with their increasing use, concerns about potential vulnerabilities and security risks have emerged. One such concern is prompt injection attacks, where malicious actors attempt to manipulate the behavior of language models by strategically crafting input prompts. In this article, we will discuss the concept of prompt injection attacks, explore the implications, and outline some potential mitigation strategies.

What are prompt injection attacks?

In the context of language models like ChatGPT, a prompt is the initial text or instruction given to the model to generate a response. The prompt sets the context and provides guidance for the model to generate a coherent and relevant response.

Prompt injection attacks involve crafting input prompts in a way that manipulates the model’s behavior to generate biased, malicious, or undesirable outputs. These attacks exploit the inherent flexibility of language models, allowing adversaries to influence the model’s responses by subtly modifying the input instructions or context.

Implications and risks of these cyberattacks

Prompt injection could disclose a language model’s previous instructions, and in some cases, stop the model from following its original instructions. This allows a malicious user to remove safeguards around what the model is allowed to do and could even expose sensitive information. Some examples of prompt injections for ChatGPT were published here.

The risks of these types of attacks include the following:

  1. Propagation of misinformation or disinformation: By injecting false or misleading prompts, attackers can manipulate language models to generate plausible-sounding but inaccurate information. This can lead to the spread of misinformation or disinformation, which may have severe societal implications.
  2. Biased output generation: Language models are trained on vast amounts of text data, which may contain biases. Prompt injection attacks can exploit these biases by crafting prompts that lead to biased outputs, reinforcing or amplifying existing prejudices.
  3. Privacy concerns: Through prompt injection attacks, adversaries can attempt to extract sensitive user information or exploit privacy vulnerabilities present in the language model, potentially leading to privacy breaches and misuse of personal data.
  4. Exploitation of downstream systems: Many applications and systems rely on the output of language models as an input. If the language model’s responses are manipulated through prompt injection attacks, the downstream systems can be compromised, leading to further security risks.

Model inversion

One example of a prompt injection attack is “model inversion,” where an attacker attempts to exploit the behavior of machine learning models to expose confidential or sensitive data.

Model inversion is a type of attack that leverages the information revealed by the model’s outputs to reconstruct private training data or gain insights into sensitive information. By carefully designing queries and analyzing the model’s responses, attackers can reconstruct features, images, or even text that closely resemble the original training data.

Organizations using machine learning models to process sensitive information face the risk of proprietary data leakage. Attackers can reverse-engineer trade secrets, intellectual property, or confidential information by exploiting the model’s behavior. Information such as medical records or customer names and addresses could also be recovered, even if it has been anonymized by the model.

Mitigation strategies for developers

As of the writing of this article, there is no way for developers and engineers completely prevent prompt injection attacks. However, there are some mitigation strategies that should be considered for any organization that would like to develop language model applications:

  • Input validation and filtering: Implementing strict input validation mechanisms can help identify and filter out potentially malicious or harmful prompts. This can involve analyzing the input for specific patterns or keywords associated with known attack vectors. The use of machine learning to do input validation is an emerging approach.
  • Adversarial testing: Regularly subjecting language models to adversarial testing can help identify vulnerabilities and improve their robustness against prompt injection attacks. This involves crafting and analyzing inputs specifically designed to trigger unwanted behaviors or exploit weaknesses.
  • Model training and data preprocessing: Developers should aim to train language models on diverse and unbiased datasets, minimizing the presence of inherent biases. Careful data preprocessing and augmentation techniques can help reduce the risk of biases in the models’ outputs.

Mitigation strategies for users

It’s not just important for the developers of language models to consider the security risks, but also the consumers. Some mitigation strategies for users include:

  • Blocking unwanted traffic: An organization could block domains related to LLM applications that are not deemed safe, or even block traffic where sensitive information is being included.
  • User awareness and education: Users should be educated about the risks associated with prompt injection attacks and encouraged to exercise caution while interacting with language models. Awareness campaigns can help users identify potential threats and avoid inadvertently participating in malicious activities.

Conclusion

Organizations are racing to implement language models into their products. While these models offer great gains in user experience, all of us need to consider the security risks associated with them.  

Mitigative controls must be implemented and tested in order to ensure the responsible and secure deployment of this technology. In particular, mitigative controls around input validation and adversarial testing will greatly reduce the risk of sensitive data exposure through prompt injection attacks.

Users of AI models should avoid submitting any private, sensitive, or proprietary data due the risk that it could be exposed to third-parties.

If you’d like to learn more about how Netskope helps securely enable generative AI, visit our page here.

author image
Colin Estep
Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.

Bleiben Sie informiert!

Abonnieren Sie den Netskope-Blog