Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

close
close
  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,400 customers worldwide including more than 30 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

A Leader in SSE. Now a Leader in Single-Vendor SASE.

Learn why Netskope debuted as a leader in the 2024 Gartner® Magic Quadrant™️ for Single-Vendor Secure Access Service Edge

Get the report
Customer Visionary Spotlights

Read how innovative customers are successfully navigating today’s changing networking & security landscape through the Netskope One platform.

Get the eBook
Customer Visionary Spotlights
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Aerial view of a city
  • Security Service Edge chevron

    Protect against advanced and cloud-enabled threats and safeguard data across all vectors.

  • SD-WAN chevron

    Confidently provide secure, high-performance access to every remote user, device, site, and cloud.

  • Secure Access Service Edge chevron

    Netskope One SASE provides a cloud-native, fully-converged and single-vendor SASE solution.

The platform of the future is Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
SASE Architecture For Dummies eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through secure access service edge (SASE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

2025 Predictions
In this episode of Security Visionaries, we're joined by Kiersten Todt, President at Wondros and former Chief of Staff for the Cybersecurity and Infrastructure Security Agency (CISA) to discuss predictions for 2025 and beyond.

Play the podcast Browse all podcasts
2025 Predictions
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through secure access service edge (SASE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2024 On-Demand

Learn how to navigate the latest advancements in SASE and zero trust and explore how these frameworks are adapting to address cybersecurity and infrastructure challenges

Explore sessions
SASE Week 2024
What is SASE?

Learn about the future convergence of networking and security tools in today’s cloud dominant business model.

Learn about SASE
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Careers chevron

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Accreditations chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Help shape the future of cloud security

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Join the team
Careers at Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Go to Customer Solutions
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

Abusing Microsoft Office Using Malicious Web Archive Files

Jan 12 2022

Summary

In November of 2021, we described several techniques used by attackers to deliver malware through infected Microsoft Office files. In addition to exploits like  CVE-2021-40444, these infected documents frequently abuse VBA (Visual Basic for Applications) to execute their techniques, regardless of the final payload. Attackers also often use extra layers of protection to evade signature-based detections, like constructing PowerShell scripts and WMI namespaces at runtime, as done by Emotet. In addition to code obfuscation, attackers use other techniques to evade detection like non-standard file types in Microsoft Word.

Netskope Threat Labs is currently tracking a malicious campaign that uses Web Page Archive files (“.mht” or “.mhtml”) to deliver infected documents, which eventually deploys a backdoor that uses Glitch for C2 communication. This is effective because Microsoft Word is able to open the document in “.mht” format, even using the “.doc” extension.

The usage of Web Archive files to deliver infected documents was previously seen and linked to APT32 (a.k.a. Ocean Lotus and Cobalt Kitty), a cyber espionage group known for targeting governments and journalists. Furthermore, a similar backdoor used in this campaign was spotted in August 2021 and also linked to this same threat group.

In this blog post, we will show details about how this threat campaign works.

Stage 01 – RAR Files

The attack chain starts with a RAR file that contains the infected Web Archive, probably delivered through phishing campaigns. We have spotted some of the files in VirusTotal with a low detection rate, between 7 and 10 engines.

Example of RAR files related to this malicious campaign.
RAR files related to this malicious campaign.

The MHT file compressed in the RAR is quite large, between 35 and 63 MB, containing the infected Word document as well as other files used throughout the attack.

Screenshot. Web Archive file that is opened by Microsoft Word
Web Archive file that is opened by Microsoft Word.

Furthermore, we also found the “Zone.Identifier” file within the RAR, which is a common ADS (Alternate Data Stream) used to store metadata about the original file.

Screenshot of Zone.Identifier ADS within the RAR file.
Zone.Identifier ADS within the RAR file.

Modern browsers may include additional information about the downloaded object in this ADS, such as the source URL and the ZoneID, which defines the security zone based on where the file was downloaded from. 

Microsoft Word won’t open the Web Archive file if the ZoneID is 3 or 4, as this indicates that the file came from untrustworthy sources. It’s unclear if the attackers created this ADS on purpose, but the “ZoneId=2” bypasses the Office protection by making it look as if it came from a trusted site.

We can test this by changing the ZoneId to a higher number, which prevents the file from being opened.

Screenshot showing Web Archive error when ZoneId is higher than 2.
Web Archive error when ZoneId is higher than 2.

Stage 02 – Infected Word File

As previously mentioned, Microsoft Word is able to handle Web Archives, and as soon as the victim opens the file, the infected document within the Web Archive is opened, luring the user to click on the “Enable Content” button to execute the malicious code. Analysis tools such as olevba and oledump are able to parse “.mht” and “.mhtml” files, however, we were not able to extract the code from these malicious files using these tools.

Screenshot of fake message asking the victim to enable the file’s content.
Fake message asking the victim to enable the file’s content.

The attackers also protected the VBA project with a password, likely to delay analysis.

Example of VBA project protected by password.
VBA project protected by password.

Once the protection is removed, we can observe a large and obfuscated VBA macro code.

Screenshot of Malicious VBA code within the document.
Malicious VBA code within the document.

We created a script to decode all the strings in this VBA code, which revealed some file names and paths.

Example of some VBA decoded strings.
Some VBA decoded strings.

After some minor deobfuscation and analysis of the VBA code, we can tell that the script:

  1. Drops the payload to “C:\ProgramData\Microsoft\User Account Pictures\guest.bmp“;
  2. Copies the payload to “C:\ProgramData\Microsoft Outlook Sync\guest.bmp“;
  3. Creates and display a decoy document named “Document.doc“;
  4. Rename the payload from “guest.bmp” to “background.dll“;
  5. Executes the DLL by calling either “SaveProfile” or “OpenProfile” export functions.

The final payload lies within the Web Archive, and the attackers removed the magic number and the MS-DOS stub message, likely to avoid detection. When the VBA code drops the DLL in the disk, it replaces the two bytes at the beginning of the file.

Screenshot of VBA fixing DLL’s magic number.
VBA fixing DLL’s magic number.

After executing the payload, the VBA code deletes the original Word file and opens the decoy document.

Example of decoy file created by the malicious VBA code.
Decoy file created by the malicious VBA code.

Stage 03 – DLL Backdoor

The payload is a 64-bit DLL named “background.dll”, which is executed every 10 minutes through a scheduled task named “Winrar Update”.

Example of backdoor persistence technique.
Backdoor persistence technique.

The DLL is quite large (between 20 and 32 MB) and it’s packed. The malicious entry point is located in the DLL exported function named either SaveProfile or OpenProfile. As soon as it’s running, the payload is unpacked and injected into another process.

Example of DLL unpacking and injecting payload.
DLL unpacking and injecting payload.

The API “CreateProcessW” is used to create a “rundll32.exe” process that runs indefinitely, by calling the “Sleep” function from “kernel32.dll”. Using Windows native binaries (LoLBins) for malicious activities is a common technique to stay under the radar, as previously mentioned in our blog post.

Screenshot of Process injection technique.
Process injection technique.

Looking closely at the function we named “mw_inject_payload”, it’s possible to observe calls to “VirtualAllocEx”, used to allocate memory in the new process, and “WriteProcessMemory”, used to write the payload in the allocated space.

Once the unpacked payload is running, it starts by collecting information about the environment, such as the network adapter information, username, computer name, etc.

Screenshot of backdoor collecting environment information.
Backdoor collecting environment information.

Furthermore, the backdoor also enumerates all system’s directories and files and collects information about running processes.

Example of backdoor collecting information about directories, files, and processes.
Backdoor collecting information about directories, files, and processes.

Once the data is collected, the malware compiles everything in a single location and encrypts the content before sending it to the C2 server.

Example of encrypting data before C2 communication.
Encrypting data before C2 communication.

Finally, the data is sent to a C2 server hosted on Glitch, which is a cloud service that provides tools for collaborative web development.

Screenshot of Backdoor C2 communication.
Backdoor C2 communication.

We have reported all the malicious URLs we found in this campaign to Glitch’s abuse team, which took immediate action to bring them down.

Conclusion

Attackers will opt to use all available tools and techniques to minimize the chances of detection, like in the case we just analyzed, where the usage of Web Archive files to deliver infected documents minimizes the chances of signature-based detection. Also, by using a cloud service for C2 communication, attackers increase their chances to stay under the radar.

Protection

Netskope Threat Labs is actively monitoring this campaign and has ensured coverage for all known threat indicators and payloads. 

  • Netskope Threat Protection
    • Win32.Trojan.MHTGlitch
  • Netskope Advanced Threat Protection provides proactive coverage against this threat.
    • Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static analysis
    • Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our cloud sandbox

IOCs

A full list of IOCs, a Yara rule, and the script used in this analysis are all available in our Git repo.

author image
Gustavo Palazolo
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.
Gustavo Palazolo is an expert in malware analysis, reverse engineering and security research, working many years in projects related to electronic fraud protection.

Stay informed!

Subscribe for the latest from the Netskope Blog