Quantify the value of Netskope One SSE – Get the 2024 Forrester Total Economic Impact™ study

close
close
  • Why Netskope chevron

    Changing the way networking and security work together.

  • Our Customers chevron

    Netskope serves more than 3,400 customers worldwide including more than 30 of the Fortune 100

  • Our Partners chevron

    We partner with security leaders to help you secure your journey to the cloud.

A Leader in SSE. Now a Leader in Single-Vendor SASE.

Learn why Netskope debuted as a leader in the 2024 Gartner® Magic Quadrant™️ for Single-Vendor Secure Access Service Edge

Get the report
Customer Visionary Spotlights

Read how innovative customers are successfully navigating today’s changing networking & security landscape through the Netskope One platform.

Get the eBook
Customer Visionary Spotlights
Netskope’s partner-centric go-to-market strategy enables our partners to maximize their growth and profitability while transforming enterprise security.

Learn about Netskope Partners
Group of diverse young professionals smiling
Your Network of Tomorrow

Plan your path toward a faster, more secure, and more resilient network designed for the applications and users that you support.

Get the white paper
Your Network of Tomorrow
Netskope Cloud Exchange

The Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.

Learn about Cloud Exchange
Aerial view of a city
  • Security Service Edge chevron

    Protect against advanced and cloud-enabled threats and safeguard data across all vectors.

  • SD-WAN chevron

    Confidently provide secure, high-performance access to every remote user, device, site, and cloud.

  • Secure Access Service Edge chevron

    Netskope One SASE provides a cloud-native, fully-converged and single-vendor SASE solution.

The platform of the future is Netskope

Security Service Edge (SSE), Cloud Access Security Broker (CASB), Cloud Firewall, Next Generation Secure Web Gateway (SWG), and Private Access for ZTNA built natively into a single solution to help every business on its journey to Secure Access Service Edge (SASE) architecture.

Go to Products Overview
Netskope video
Next Gen SASE Branch is hybrid — connected, secured, and automated

Netskope Next Gen SASE Branch converges Context-Aware SASE Fabric, Zero-Trust Hybrid Security, and SkopeAI-powered Cloud Orchestrator into a unified cloud offering, ushering in a fully modernized branch experience for the borderless enterprise.

Learn about Next Gen SASE Branch
People at the open space office
SASE Architecture For Dummies

Get your complimentary copy of the only guide to SASE design you’ll ever need.

Get the eBook
SASE Architecture For Dummies eBook
Make the move to market-leading cloud security services with minimal latency and high reliability.

Learn about NewEdge
Lighted highway through mountainside switchbacks
Safely enable the use of generative AI applications with application access control, real-time user coaching, and best-in-class data protection.

Learn how we secure generative AI use
Safely Enable ChatGPT and Generative AI
Zero trust solutions for SSE and SASE deployments

Learn about Zero Trust
Boat driving through open sea
Netskope achieves FedRAMP High Authorization

Choose Netskope GovCloud to accelerate your agency’s transformation.

Learn about Netskope GovCloud
Netskope GovCloud
  • Resources chevron

    Learn more about how Netskope can help you secure your journey to the cloud.

  • Blog chevron

    Learn how Netskope enables security and networking transformation through secure access service edge (SASE)

  • Events and Workshops chevron

    Stay ahead of the latest security trends and connect with your peers.

  • Security Defined chevron

    Everything you need to know in our cybersecurity encyclopedia.

Security Visionaries Podcast

2025 Predictions
In this episode of Security Visionaries, we're joined by Kiersten Todt, President at Wondros and former Chief of Staff for the Cybersecurity and Infrastructure Security Agency (CISA) to discuss predictions for 2025 and beyond.

Play the podcast Browse all podcasts
2025 Predictions
Latest Blogs

Read how Netskope can enable the Zero Trust and SASE journey through secure access service edge (SASE) capabilities.

Read the blog
Sunrise and cloudy sky
SASE Week 2024 On-Demand

Learn how to navigate the latest advancements in SASE and zero trust and explore how these frameworks are adapting to address cybersecurity and infrastructure challenges

Explore sessions
SASE Week 2024
What is SASE?

Learn about the future convergence of networking and security tools in today’s cloud dominant business model.

Learn about SASE
  • Company chevron

    We help you stay ahead of cloud, data, and network security challenges.

  • Careers chevron

    Join Netskope's 3,000+ amazing team members building the industry’s leading cloud-native security platform.

  • Customer Solutions chevron

    We are here for you and with you every step of the way, ensuring your success with Netskope.

  • Training and Accreditations chevron

    Netskope training will help you become a cloud security expert.

Supporting sustainability through data security

Netskope is proud to participate in Vision 2045: an initiative aimed to raise awareness on private industry’s role in sustainability.

Find out more
Supporting Sustainability Through Data Security
Help shape the future of cloud security

At Netskope, founders and leaders work shoulder-to-shoulder with their colleagues, even the most renowned experts check their egos at the door, and the best ideas win.

Join the team
Careers at Netskope
Netskope dedicated service and support professionals will ensure you successful deploy and experience the full value of our platform.

Go to Customer Solutions
Netskope Professional Services
Secure your digital transformation journey and make the most of your cloud, web, and private applications with Netskope training.

Learn about Training and Certifications
Group of young professionals working

New Phishing Attacks Exploiting OAuth Authorization Flows (Part 1)

Aug 10 2021

This blog series expands upon a presentation given at DEF CON 29 on August 7, 2021.

Phishing attacks are starting to evolve from the old-school faking of login pages that harvest passwords to attacks that abuse widely-used identity systems such as Microsoft Azure Active Directory or Google Identity, both of which utilize the OAuth authorization protocol for granting permissions to third-party applications using your Microsoft or Google identity.

In the past few years, we have seen illicit grant attacks that use malicious OAuth applications created by attackers to trick a victim into granting the attacker wider permissions to the victim’s data or resources:

Instead of creating fake logins/websites, illicit grant attacks use the actual OAuth authentication/authorization flows in order to obtain the OAuth session tokens. This has the advantage of bypassing MFA authentication, with permanent or nearly indefinite access since the OAuth tokens can be continually refreshed in most cases.

In this blog series, we will review how various quirks in the implementation of different OAuth authorization flows can make it easier for attackers to phish victims due to:

  1. Attackers not needing to create infrastructure (e.g., no fake domains, websites, or applications), leading to easier and more hidden attacks
  2. An ability to easily reuse client ids of existing applications, obfuscating attacker actions in audit logs
  3. The use of default permissions (scopes), granting broad privileges to the attacker
  4. A lack of approval (consent) dialogs shown to the user
  5. An ability to obtain new access tokens with broader privileges and access, opening up lateral movement among services/APIs

Finally, we will discuss what users can do today to protect themselves from these potential new attacks.

In Part 1 of this blog series, we will provide an overview of OAuth 2.0 and two of its authorization flows, the authorization code grant and the device authorization grant.

OAuth as we know it

The OAuth 2.0 RFC 6749 was released in October 2012, and OAuth has become the standard for authorizing Internet interactions based on your Microsoft Active Directory, Google Identity, or with vendors such as Paypal or Login With Amazon. 

With OAuth authorization flows, users benefit from:

  • Not sharing their username and password with 3rd-party websites or applications—authentication is handled by the identity provider alone
  • Using a centralized set of identity credentials across applications, simplifying password management

There are multiple authorization flows within the OAuth 2.0 specification that handle a variety of authorization cases. The flows include web applications/sites, mobile/desktop applications, and devices such as Smart TVs (e.g., authorizing streaming video content to your TV). At a high level, all of the OAuth authorization flows involve the following steps in some way:

  1. An application directs the user to the identity/authorization provider for authentication and authorization of access to the user’s data or resources. 
  2. The user successfully and securely authenticates with the identity/authorization provider
  3. Depending upon the flow, the user may be presented with a consent screen that clarifies which permissions are being requested
  4. After successful authentication and authorization, an OAuth access session token is created that allows API calls using the user’s identity with the permissions approved by the user
  5. The application obtains the OAuth access token using an authorization code
  6. The application then accesses the data or resources required. OAuth access tokens usually expire in one hour, but refresh tokens are usually also returned to the application, which can be used to create new access tokens, usually indefinitely by default.

Most of us have encountered OAuth as users when authorizing access by applications such as Google Drive, Gmail, Outlook, or OneDrive. This is the most common flow, called the OAuth authorization code grant. Here we authenticate and authorize the Google Cloud CLI, gcloud, to access our GCP environment:

1. Application requests authorization by redirecting the user to the identity/authorization provide

$ gcloud auth login [email protected] --force

Your browser has been opened to visit:
https://accounts.google.com/o/oauth2/auth?response_type=code&client_id=32555940559.apps.googleusercontent.com&redirect_uri=http%3A%2F%2Flocalhost%3A8085%2F&scope=openid+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fuserinfo.email+ht...

2. User authentication: Enters username

Screenshot showing username authentication
https://accounts.google.com/o/oauth2/auth/identifier

3. User authentication: Enters password

Screenshot showing password authentication
https://accounts.google.com/signin/v2/challenge/pwd

4. User authorization: The user is presented with a consent screen and approves the scopes requested by the application

Screenshot of consent screen to approve the scopes requested by the application
https://accounts.google.com/signin/oauth/consent

5. Confirmation message: In some cases, a successful authorization message is shown.

Screenshot of successful confirmation message
https://cloud.google.com/sdk/auth_success

6. Application continues: The application has retrieved the user’s OAuth access token and can now access resources.

$ gcloud auth login [email protected] --force

Your browser has been opened to visit:
https://accounts.google.com/o/oauth2/auth?response_type=code&client_id=32555940559.apps.googleusercontent.com&redirect_uri=http%3A%2F%2Flocalhost%3A8085%2F&scope=openid+https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fuserinfo.email+ht...

You are now logged in as [[email protected]].

$ gcloud projects list

Here is what’s happening under the hood of the above flow:

Diagram of OAuth 2.0 Authorization Code Grant flow.

Device Authorization Grant

A new authorization flow, called device authorization grant, described in RFC 8628, was added in August 2019. Its purpose was to allow easier OAuth authorization on limited-input devices, such as smart TVs, where inputting credentials is tedious using TV remote controls, for enabling services such as video streaming subscriptions:

Image of Netflix login screen on a TV

With device code authorization implemented, instead of the above, the user might see an authentication/authorization process that looks more like this:

Image of Netflix mobile device login screen on a TV
Image of Netskope mobile code login screen

Now, the user can use a richer-input device such as a smartphone or computer to enter a short code in a login screen with a short URL in order to authenticate and authorize the smart TV to access content such as the user’s streaming video subscription.

Underneath the above user experience is the device code flow:

Diagram of OAuth 2.0 Device Code Authorization

Conclusion

There are at least three more flows in OAuth 2.0, and it’s fair to say that OAuth is complicated. 

  • It’s trying to bring secure authorization to complex interactions among three parties (identity/authorization provider, user, application/client/device), making it a challenge to secure against attackers who are looking to insert themselves into this process
  • It’s difficult to understand, by users and security professionals alike, making it difficult to secure (e.g. “What’s this long code I’m looking at?”)
  • It has to cover a variety of use cases including web server apps, native/mobile/desktop apps, devices, and javascript apps, with different flows for each, and with each flow having its own peculiarities and opportunities for abuse

At the same time, the OAuth protocol was not designed to address other important issues like the identity of each of the three parties. A user does authenticate with the identity system, but the application’s identity and, more importantly, the trustworthiness of the application is not addressed by OAuth. This, along with the complexity, leads to several areas that can be abused by attackers.

In Part 2, we will dig further into how a phishing attack is carried out using the device authorization grant flow.

author image
Jenko Hwong
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.
Jenko has 15+ years of experience in research, product mgmt., and engineering in cloud security, routers/appliances, threat intel, vulnerability scanning and compliance.

Stay informed!

Subscribe for the latest from the Netskope Blog